Introduction to FAP Program and PTRT Platform

October 2019
This presentation contains forward-looking statements, which express the current beliefs and expectations of management. Examples of forward-looking statements discussed in this presentation include, among others, statements regarding our expectation of timing for submission and potential approval of our filings for rucaparib with the FDA, the timing of our discovery, pre-clinical and clinical development program for FAP and timing for submission and potential approval of our filings for the FAP program with the FDA, and our expectations regarding the potential for candidates and targets in the FAP program. Such statements are based on current expectations and involve a number of known and unknown risks and uncertainties that could cause Clovis Oncology’s future results, performance or achievements to differ significantly from the results, performance or achievements expressed or implied by such forward-looking statements. Such risks and uncertainties include, among others, the uncertainties inherent in our clinical development programs for our drug candidates, whether future study results will be consistent with study findings to date, the timing of availability of data from our clinical trials and the enrollment, timing and results of our planned clinical trials, the risk that pre-clinical or clinical studies may not support further development in certain additional indications or tumor types, and actions by the FDA, the EMA or other regulatory authorities regarding data required to support drug applications and whether to approve drug applications. Other important factors that could cause or contribute to such differences are discussed in Clovis Oncology’s filings with the U.S. Securities and Exchange Commission. Forward-looking statements speak only as of the date on which they are made, and Clovis Oncology undertakes no obligation to update publicly or revise any forward-looking statement, whether as a result of new information, future developments or otherwise.
Collaboration Overview

• Clovis Oncology has acquired rights to FAP-targeted radiopharmaceutical program from 3B Pharmaceuticals (3BP)
 – Includes U.S. and global rights, excluding Europe (inclusive of Russia, Turkey and Israel), where 3BP retains rights

• Clovis planning to file IND for FAP-targeted radiopharmaceutical therapy in 2H 2020

• FAP highly expressed in multiple tumor types; Clovis to pursue broad and accelerated clinical development program
 – FAP is highly expressed in many epithelial cancers, including more than 90 percent of breast, lung, colorectal and pancreatic carcinomas

• Clovis to acquire rights to discovery program for three additional targets for radionuclide therapy
 – Includes global rights

• Clovis to pay approximately $12 million in upfront payments to 3BP

Source: Rettig et al., 1993; Cancer Research
FAP = fibroblast activation protein alpha, IND = Investigational New Drug
Introduction to Peptide-Targeted Radionuclide Therapy

• Peptide-targeted radionuclide therapy (PTRT) involves a small amount of radioactive material (radionuclide) that is combined with a cell-targeting peptide for the treatment of cancer

 – PTRT is a form of radiopharmaceutical

• The targeting peptide is able to recognize and bind to specific features of tumors, such as antigens and cell receptors

• When injected into the patient’s bloodstream, the peptide attaches to cancer cells, delivering a high dose of radiation to the tumor while sparing normal tissues

• Examples of this therapeutic approach include:

 – LUTATHERA® a radiolabeled somatostatin analog approved for the treatment of midgut carcinoid tumors

 – 177Lu-PSMA-617, a radiolabeled prostate specific membrane antigen (PSMA) binding dipeptide in Phase 3 for metastatic castration-resistant prostate cancer (mCRPC)

Radionuclides for PTRT

- A number of different radionuclides can be used for PTRT, generally split between alpha (α) and electron (e⁻ or β⁻) emitters
 - Positron (e.g. ⁶⁸Ga) / gamma (e.g. ⁹⁹mTc) emitting radionuclides are employed for imaging (patient selection/monitoring)
- Radionuclides used for therapy emit ionizing radiation that cause DNA damage and cell death

Examples:
- Actinium-225 (²²⁵Ac)
 - Relatively large mass
 - Low penetration
 - Highly ionizing (destructive)
- Lutetium-177 (¹⁷⁷Lu)
 - Very small mass
 - Relatively higher penetration
 - Ionizing

Sources: Grzmil et al., 2019, Radiopharm
Ionizing Radiation Kills Cells by Causing DNA Damage

Un-repaired DNA damage leads to cell death

Potential to combine FAP-targeted radiotherapy with Rubraca
The Targeted Radiotherapy 177Lu-PSMA-617 has Emerged as a Potential Treatment for mCRPC

- 177Lu-PSMA-617 is comprised of a mCRPC targeting moiety - an anti-PSMA (Prostate Specific Membrane Antigen) peptide that specifically binds to prostate cancer cells, linker and the β-emitter radionuclide 177Lutetium (177Lu)
- Prospective Phase 2 showed 57% >50% prostate specific antigen (PSA) decline, 82% PCWG2 RECIST 1.1 response after treatment with 177Lu-PSMA-617
- Phase 3 VISION trial on-going (NCT03511664)

3BP Peptides are Promising for Targeting Radionuclide Therapy in Solid Tumors

- Peptides are attractive targeting molecules due to their small size and ease of manufacture.
- For radiotherapy; the rapid systemic clearance, tissue distribution and tumor penetrance favor small peptides vs. other targeting moieties.

<table>
<thead>
<tr>
<th></th>
<th>3BP Peptides</th>
<th>Monoclonal antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Affinity</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Selectivity</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Molecular weight (kDa)</td>
<td>1-2</td>
<td>150</td>
</tr>
<tr>
<td>Tumor penetration</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Blood clearance</td>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Liver accumulation</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Dose limiting organ</td>
<td>tbd</td>
<td>Bone marrow</td>
</tr>
</tbody>
</table>

Fibroblast Activation Protein Alpha (FAP) is a Pan-tumor Target Expressed on Cancer-Associated Fibroblasts

- FAP is a transmembrane cell surface proteinase that degrades proteins of the extracellular matrix and is up-regulated in cancer

- FAP is highly expressed in cancer-associated fibroblasts (CAFs) which are found in the majority of cancer types, potentially making it a suitable target across a wide array of tumors
 - FAP has limited expression on normal fibroblasts reducing the potential for FAP-targeted agents having effects in normal tissue

Source: Linder et al., 2018, J. Nuclear Medicine
Small-molecule FAP-binding Imaging Agents Show Effective Tumor Targeting in Multiple Tumor Types

- University of Heidelberg (Germany) developed a series of specific PET imaging agents to evaluate FAP as a pan-tumor target
 - 68Ga-FAPI-04 selected as optimal
- Evaluated in 80 patients of 28 different tumor entities (54 primary tumors and 229 metastases)
- Strong FAP-mediated tumor uptake with low background in normal tissues and organs

3BP has Identified a FAP-binding Peptide for PTRT

- 10^{14} peptides were screened \textit{in vitro} against FAP using mRNA display selecting on affinity and stability to provide initial FAP-binding peptides
- Structure activity relationship (SAR) examined to increase affinity and stability further and sites for radionuclide attachment identified
- Peptide sequence optimized for \textit{in vivo} biodistribution
- Nominated preclinical lead and back-up; IND enabling work on-going

\begin{itemize}
 \item FAP-binding peptide
 \item Targets FAP expressing cancer-associated fibroblasts and tumor cells
\end{itemize}

* FAP binding peptide image added for illustrative purposes only. Does not represent actual sequence of FAP lead candidate

Sources: 3B Pharmaceuticals, Data on File; Park et al., 1999, \textit{J. of Biological Chemistry}
Biodistribution and Tumor Retention Time of FAP Lead Candidate is Supportive of Therapeutic Applications

- In FAP-positive tumor-bearing mouse studies, the tumor retention time (how long the radiopharmaceutical stays in the tumor) and biodistribution of 3BP lead candidate is supportive of therapeutic investigation.

Source: 3B Pharmaceuticals, Data on File
FAP-targeted Radiotherapy has Multiple Potential Modes of Anti-tumor Action

• Targeting tumors with a FAP-targeted radiotherapy has multiple modes of anti-tumor action primarily relying on radiation crossfire where tumor cells are irradiated by being in close proximity to CAFs
 – The depletion of CAFs impacts the growth of cancer cells and enhances anti-tumor immune responses

• Potential to combine FAP-targeted radiotherapy with PD-(L)1

Sources: Fischer et al., 2012, Clinical Cancer Research; Schuberth et al., 2013, J. Trans. Med.; Rettig et al., 1988, Immunology
FAP-Targeted Radionuclide Therapy Program Development Plan

• Initial development plan includes completion of pre-clinical studies and initial First-in-Human (FIH) studies:
 – IND enabling studies on-going
 – Planning to submit IND in 2H 2020 and initiate FIH study in solid tumors shortly thereafter
 – FIH study to determine the dose and tolerability of the FAP-targeting therapeutic and imaging agent
 – Once dose is established, expansion cohorts planned in multiple solid tumor types as part of a global clinical development program
 – Potential for accelerated approvals in multiple tumor types