The Effect of Age on Efficacy and Safety Outcomes with Rucaparib: A Post Hoc Exploratory Analysis of ARIEL3, a Phase 3, Randomized, Placebo-Controlled Maintenance Study in Patients with Recurrent Ovarian Carcinoma

Jonathan A. Ledermann,1 Amit M. Oza,2 Domenica Lorusso,3 Carol Aghajanian,4 Ana Oaknin,5 Andrew Dean,6 Nicoletta Colombo,7 Johanne I. Weberpals,8 Andrew R. Clamp,9 Giovanni Scambia,3 Alexandra Leary,10 Robert W. Holloway,11 Margarita Amenedo Gancedo,12 Peter C. Fong,13 Jeffrey C. Goh,14 Floor Backes,15 Susana Banerjee,16 Sandra Goble,17 Terri Cameron,17 Robert L. Coleman18

1UCL Cancer Institute and UCL Hospitals, London, UK; 2Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; 3Fondazione Policlinico Universitario A. Gemelli IRCCS and MITO, Rome, Italy; 4Memorial Sloan Kettering Cancer Center, New York, NY; 5Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain; 6St John of God Subiaco Hospital, Subiaco, WA, Australia; 7European Institute of Oncology and University of Milan-Bicocca, Milan, Italy; 8Ottawa Hospital Research Institute, Ottawa, ON, Canada; 9The Christie NHS Foundation Trust and University of Manchester, Manchester, UK; 10Gustave Roussy Cancer Center, INSERM U981, and Groupe d’Investigateurs Nationaux pour l’Etude des Cancers Ovariens (GINECO), Villejuif, France; 11Florida Hospital Cancer Institute, Orlando, FL; 12Oncology Center of Galicia, La Coruña, Spain; 13Auckland City Hospital, Grafton, Auckland, New Zealand; 14Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, and University of Queensland, St Lucia, QLD, Australia; 15The Ohio State University, James Cancer Center, Columbus, OH; 16The Royal Marsden NHS Foundation Trust, London, UK; 17Clovis Oncology, Inc., Boulder, CO; 18The University of Texas MD Anderson Cancer Center, Houston, TX
Disclosures

• Advisory boards: Clovis Oncology, Artios, AstraZeneca, Cristal Therapeutics, Pfizer, Roche, Seattle Genetics
• Speakers bureaus: Clovis Oncology, AstraZeneca, Merck/MSD
• Research grants: AstraZeneca, Merck/MSD
Introduction

• In ARIEL3 (NCT01968213), rucaparib maintenance treatment significantly improved PFS vs placebo in patients with recurrent ovarian cancer following response to platinum-based chemotherapy\(^1\)

• Based on these data, rucaparib is approved in the United States and European Union for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy\(^2,3\)

• This exploratory subgroup analysis of ARIEL3 compares the outcomes for 3 subgroups based on patient age at baseline (<65, 65–74, or ≥75 years)

ARIEL3 Study Design

Patient eligibility

- High-grade serous or endometrioid epithelial ovarian, fallopian tube, or primary peritoneal cancers
- Sensitive to penultimate platinum
- Responding to most recent platinum (complete or partial response)*
- CA-125 within normal range
- No restriction on size of residual tumor
- ECOG performance status ≤1
- No prior PARP inhibitors

Stratification

- HRR status by next-generation sequencing mutation analysis
 - BRCA1 or BRCA2
 - Non-BRCA HRR gene
 - None of the above
- Response to recent platinum
 - Complete response
 - Partial response
- Progression-free interval after penultimate platinum
 - 6 to ≤12 months
 - >12 months

Randomization 2:1

Rucaparib 600 mg twice daily
n=375

Placebo twice daily
n=189

*Complete response (defined by RECIST) or partial response (defined by RECIST and/or a GCIG CA-125 response [CA-125 within normal range]) maintained until entry to ARIEL3 (≤8 weeks of last dose of chemotherapy).
CA-125, cancer antigen 125; ECOG, Eastern Cooperative Oncology Group; GCIG, Gynecologic Cancer InterGroup; HRR, homologous recombination repair; PARP, poly(ADP-ribose) polymerase; RECIST, Response Evaluation Criteria In Solid Tumors version 1.1.
Patient Baseline Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Age <65 years</th>
<th>Age 65–74 years</th>
<th>Age ≥75 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib (n=237)</td>
<td>Rucaparib (n=113)</td>
<td>Rucaparib (n=25)</td>
<td>Placebo (n=117)</td>
</tr>
<tr>
<td>Placebo (n=117)</td>
<td>Placebo (n=64)</td>
<td>Placebo (n=8)</td>
<td></td>
</tr>
<tr>
<td>Age, median (range), y</td>
<td>56.0 (39.0–64.0)</td>
<td>68.0 (65.0–74.0)</td>
<td>76.0 (75.0–84.0)</td>
</tr>
<tr>
<td>Diagnosis, % (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epithelial ovarian cancer</td>
<td>86.5 (205)</td>
<td>77.0 (87)</td>
<td>80.0 (20)</td>
</tr>
<tr>
<td>Fallopian tube cancer</td>
<td>5.5 (13)</td>
<td>13.3 (15)</td>
<td>16.0 (4)</td>
</tr>
<tr>
<td>Primary peritoneal cancer</td>
<td>8.0 (19)</td>
<td>9.7 (11)</td>
<td>4.0 (1)</td>
</tr>
<tr>
<td>BRCA status, % (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA mutant</td>
<td>40.5 (96)</td>
<td>25.7 (29)</td>
<td>20.0 (5)</td>
</tr>
<tr>
<td>BRCA wild type</td>
<td>59.5 (141)</td>
<td>74.3 (84)</td>
<td>80.0 (20)</td>
</tr>
<tr>
<td>ECOG performance status 0, % (n)</td>
<td>79.7 (189)</td>
<td>68.1 (77)</td>
<td>56.0 (14)</td>
</tr>
<tr>
<td>Number of prior chemotherapy regimens, median (range)</td>
<td>2.0 (2.0–6.0)</td>
<td>2.0 (2.0–6.0)</td>
<td>2.0 (2.0–5.0)</td>
</tr>
<tr>
<td>Response to last platinum (investigator assessed), % (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response per RECIST</td>
<td>39.2 (93)</td>
<td>23.0 (26)</td>
<td>28.0 (7)</td>
</tr>
<tr>
<td>Partial response per RECIST or serologic response per GCIG CA-125 criteria</td>
<td>60.8 (144)</td>
<td>77.0 (87)</td>
<td>72.0 (18)</td>
</tr>
</tbody>
</table>

Visit cutoff date: April 15, 2017.

*One (1.6%) additional patient had a diagnosis of high-grade serous adenocarcinoma that was fallopian and/or ovarian in origin.

CA-125, cancer antigen 125; ECOG, Eastern Cooperative Oncology Group; GCIG, Gynecologic Cancer InterGroup; RECIST, Response Evaluation Criteria In Solid Tumors version 1.1.
Investigator-Assessed PFS – ITT Analysis

Age <65 years

- **Rucaparib**: Median (months) 11.1, 95% CI 8.5–13.7
- **Placebo**: Median (months) 5.4, 95% CI 5.3–5.6

- **HR**: 0.33; 95% CI, 0.25–0.43

At risk (events)
- **Rucaparib**: 237 (0) 147 (65) 87 (111) 48 (130) 19 (138) 4 (143) 0 (143)
- **Placebo**: 117 (0) 41 (69) 10 (99) 4 (103) 2 (104) 1 (104) 0 (104)

Age 65–74 years

- **Rucaparib**: Median (months) 8.3, 95% CI 8.0–11.1
- **Placebo**: Median (months) 5.3, 95% CI 2.8–5.6

- **HR**: 0.43; 95% CI, 0.29–0.64

At risk (events)
- **Rucaparib**: 113 (0) 65 (38) 33 (62) 13 (73) 7 (73) 1 (76) 0 (76)
- **Placebo**: 64 (0) 20 (39) 3 (53) 3 (53) 0 (55)

Age ≥75 years

- **Rucaparib**: Median (months) 9.2, 95% CI 5.5–NR
- **Placebo**: Median (months) 5.5, 95% CI 3.0–8.3

- **HR**: 0.47; 95% CI, 0.16–1.35

At risk (events)
- **Rucaparib**: 25 (0) 16 (8) 8 (13) 4 (14) 0 (15)
- **Placebo**: 8 (0) 2 (6) 0 (8)

Visit cutoff date: April 15, 2017. HRs were estimated using the Cox proportional hazards model.

CI, confidence interval; HR, hazard ratio; ITT, intention to treat; NR, not reached; PFS, progression-free survival.
BICR-Assessed PFS – ITT Analysis

Age <65 years

<table>
<thead>
<tr>
<th></th>
<th>Median (months)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib</td>
<td>13.7</td>
<td>10.9–22.9</td>
</tr>
<tr>
<td>Placebo</td>
<td>5.4</td>
<td>4.7–5.7</td>
</tr>
</tbody>
</table>

HR, 0.36; 95% CI, 0.26–0.50

Age 65–74 years

<table>
<thead>
<tr>
<th></th>
<th>Median (months)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib</td>
<td>13.7</td>
<td>8.3–NR</td>
</tr>
<tr>
<td>Placebo</td>
<td>5.3</td>
<td>2.9–5.5</td>
</tr>
</tbody>
</table>

HR, 0.38; 95% CI, 0.24–0.60

Age ≥75 years

<table>
<thead>
<tr>
<th></th>
<th>Median (months)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib</td>
<td>10.4</td>
<td>5.5–NR</td>
</tr>
<tr>
<td>Placebo</td>
<td>5.4</td>
<td>2.6–5.7</td>
</tr>
</tbody>
</table>

HR, 0.19; 95% CI, 0.05–0.74

Visit cutoff date: April 15, 2017. HRs were estimated using the Cox proportional hazards model.

BICR, blinded independent central review; CI, confidence interval; HR, hazard ratio; ITT, intention to treat; NR, not reached; PFS, progression-free survival.
Summary of Safety

<table>
<thead>
<tr>
<th></th>
<th>Age <65 years</th>
<th>Age 65–74 years</th>
<th>Age ≥75 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rucaparib (n=235)*</td>
<td>Placebo (n=117)</td>
<td>Rucaparib (n=113)</td>
</tr>
<tr>
<td>Treatment duration, median (range), mo</td>
<td>8.7 (0.1–43.4)</td>
<td>5.5 (1.2–43.9)</td>
<td>6.4 (0.2–38.1)</td>
</tr>
<tr>
<td>Any grade TEAE, % (n)</td>
<td>100.0 (235)</td>
<td>95.7 (112)</td>
<td>100.0 (113)</td>
</tr>
<tr>
<td>Grade ≥3 TEAE</td>
<td>54.0 (127)</td>
<td>16.2 (19)</td>
<td>69.9 (79)</td>
</tr>
<tr>
<td>Treatment interruption and/or dose reduction due to TEAE, % (n)</td>
<td>65.5 (154)</td>
<td>9.4 (11)</td>
<td>82.3 (93)</td>
</tr>
<tr>
<td>Treatment interruption due to TEAE</td>
<td>60.0 (141)</td>
<td>8.5 (10)</td>
<td>73.5 (83)</td>
</tr>
<tr>
<td>Dose reduction due to TEAE</td>
<td>46.8 (110)</td>
<td>2.6 (3)</td>
<td>70.8 (80)</td>
</tr>
<tr>
<td>Discontinued due to TEAE,† % (n)</td>
<td>11.9 (28)</td>
<td>1.7 (2)</td>
<td>21.2 (24)</td>
</tr>
<tr>
<td>Deaths due to TEAE, % (n)</td>
<td>2.1 (5)</td>
<td>0 (0)</td>
<td>0.9 (1)</td>
</tr>
<tr>
<td>Deaths due to disease progression</td>
<td>0.9 (2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Visit cutoff date: December 31, 2017. *Three patients randomized to the rucaparib arm did not receive a dose of rucaparib and are excluded from the safety population. †Excluding disease progression. TEAE, treatment-emergent adverse event.
Most Common (≥35%) Any Grade TEAEs by Age Group

Visit cutoff date: December 31, 2017. Age <65 years (rucaparib, n=235; placebo, n=117); age 65–74 years (rucaparib, n=113; placebo, n=64); age ≥75 years (rucaparib, n=24; placebo, n=8). Three patients randomized to the rucaparib arm did not receive a dose of rucaparib and are excluded from the safety population.

*Indicates combined terms.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI, confidence interval; TEAE, treatment-emergent adverse event.
Grade ≥3 Events in the Most Common TEAEs by Age Group

Visit cutoff date: December 31, 2017. Age <65 years (rucaparib, n=235; placebo, n=117); age 65–74 years (rucaparib, n=113; placebo, n=64); age ≥75 years (rucaparib, n=24; placebo, n=8). Three patients randomized to the rucaparib arm did not receive a dose of rucaparib and are excluded from the safety population.

*Indicates combined terms. 0 indicates that there were no grade ≥3 events reported for a given TEAE.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI, confidence interval; TEAE, treatment-emergent adverse event.
Conclusions

• Maintenance treatment with rucaparib improved median PFS and reduced the risk of progression vs placebo regardless of age subgroup

• In general, the safety profile of rucaparib was consistent across the 3 age subgroups
 – In the rucaparib arm, rates of dose modifications and treatment discontinuations tended to be higher in patients aged ≥65 years than in patients aged <65 years
Acknowledgments

ARIEL3 co-ordinating investigator:
• Robert L. Coleman, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Additional ARIEL3 principal investigators and sites:

AUSTRALIA
M. Buck (Sir Charles Gairdner Hospital)
A. Dean (Saint John of God Subiaco Hospital)
M. L. Friedlander (Prince of Wales Hospital)
J. Goh (Royal Brisbane and Women’s Hospital)
P. Hamett (Westmead Hospital)
G. Kichenadasse (Finders Medical Centre)
C. Scott (Peter MacCallum Cancer Centre – Melbourne)

BELGIUM
H. Denys (Universitair Ziekenhuis Gent)
L. Drix (AZ Sint Augustinus)
I. Vergote (Universitair Ziekenhuis Leuven)

CANADA
L. Elliott (Juravinski Cancer Centre)
P. Ghagate (Tom Baker Cancer Center)
A. Oza (Princess Margaret Hospital)
M. Plante (Centre Hospitalier Universitaire de Quebec)
D. Provencer (Centre Hospitalier de L’Université de Montréal)
J. Weberpals (Institut de Recherche de l’Hopital d’Ottawa)
S. Welch (London Regional Cancer Centre)

GERMANY
A. El-Balat (Universitätsklinikum Frankfurt)
C. Hanle (Klinikum Ludwigshafen-Bielshiem gGmbH)
P. Krabbsch (Klinikum Chemnitz gGmbH)
T. Neuho¨fker (HEILIOS Dr. Horst Schmidt Klinik für Gynäkologie und Gyn. Onkologie)
M. Pölcher (Rotkreuzklinikum München-Frauenklinik)
P. Wimmerberg (Technische Universität Dresden)

FRANCE
A. Fioquet (Institut Bergonié)
L. Glodeff (Institut Claudius Régaud)
F. Joly (Centre de Lutte contre le Cancer François Baclesse)
A. Leary (Institut de cancérologie Gustave Roussy)
A. Lortholary (Centre Catharine de Sienne)
J. Lotz (Hôpital Tenon)
J. Medioni (Hôpital Européen Georges Pompidou)
O. Tredan (Centre Léon Bérard)
B. You (Centre Hospitalier Lyon Sud)

ISRAEL
A. Amir (Rambam Medical Center)
S. Kovel (Assaf Harofeh Medical Centre)
M. Lovov (The Lady Davis Carmel Medical Center)
T. Safrir (Tel Aviv Sourasky Medical Center)
R. Shapira-Frommer (Shaum Sheba Medical Center)
S. Stemmer (Rabin Medical Center)

ITALY
A. Bologna (Arcispedale Santa Maria Nuova)
N. Colomba (Istituto Europeo di Oncologia)
D. Lorusso (Fondazione IRCCS Istituto Nazionale dei Tumori – Milano)
P. Pignata (Fondazione IRCCS Istituto Nazionale Tumori – Pascale)
R. F. Sabbatini (Polisiclinico di Modena)
G. Scambia (Fondazione Policlinico Universitario Agostino Gemelli)
S. Tambri (Ospedale Civile degli Infermi)
C. Zamagni (Azienda Ospedaliero-Universitaria di Bologna – Polisiclinico S. Orsola-Malpighi)

NEW ZEALAND
P. Fong (Auckland City Hospital)
A. O’Donnell (Wellington Regional Hospital)

UNITED KINGDOM
M. Amenedo Gancedo (Centro Oncológico Regional de Galicia)
A. Casado Herranz (Hospital San Carlos Madrid)
J. Garcia-Donas (HM Centro Integral Oncológico Clara Campal)
E. Guerra (Hospital Ramón y Cajal)
A. Oakvins (Hospital Vall d’Hebron)
I. Palacio (Hospital Universitario Central de Asturias)
I. Romero (Instituto Valenciano de Oncología-Fundación IVI-FINCOV)
A. Sanchez (Hospital Regional Universitario de Málaga Hospital General)

UNITED STATES
C. Aghaian (Memorial Sloan Kettering Cancer Center)
D. K. Armstrong (The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins)
M. J. Birrer (Massachusetts General Hospital)
M. K. Buss (Beth Israel Deaconess Medical Center)
S. K. Chambers (University of Arizona Cancer Center)
L. Chen (University of California San Francisco)
R. L. Coleman (MD Anderson Cancer Center)
R. W. Holloway (Florida Hospital Cancer Care)
G. E. Konceny (University of California Los Angeles)
L. Ma (Rocky Mountain Cancer Centers)
M. A. Morgan (University of Pennsylvania)
R. T. Morris (Kamanscan Cancer Institute)
D. G. Mutch (Washington University School of Medicine)
D. M. O’Malley (The Ohio State University, Arthur G. James Cancer Hospital)
B. M. Slozmovitz (Sylvestre Comprehensive Cancer Center)
E. M. Swisher (University of Washington)
T. Vanderkwaak (Hope Women’s Cancer Centers)
M. Vullovitch (Memorial Healthcare System)

This research was sponsored by Clovis Oncology, Inc. Medical writing and editorial support funded by Clovis Oncology was provided by Nathan Yardy, PhD, and Shannon Davis of Ashfield Healthcare Communications.

…and all ARIEL3 study patients and their families and caregivers