Rucaparib vs Chemotherapy in Patients With Advanced, Relapsed Ovarian Cancer and a Deleterious BRCA Mutation: Efficacy and Safety From ARIEL4, a Randomized Phase 3 Study

Rebecca Kristeleit,1 Alla Lisyanskaya,2 Alexander Fedenko,3 Mikhail Dvorkin,4 Andreia Cristina de Melo,5 Yaroslav Shparyk,6 Irina Rakhmatullina,7 Igor Bondarenko,8 Nicoletta Colombo,9 Valentyn Svintsitskiy,10 Luciano Biela,11 Marina Nechaeva,12 Francesco Raspagliesi,13 Giovanni Scambia,14 David Cibula,15 Róbert Póka,16 Ana Oaknin,17 Tamar Safra,18 Beata Mackowiak-Matejczyk,19 Ling Ma,20 Daleen Thomas,21 Kevin K. Lin,21 Karen McLachlan,21 Sandra Goble,21 Amit M. Oza22

1Guy’s and St. Thomas’ NHS Foundation Trust, London, UK; 2Saint Petersburg City Oncological Dispensary, Russia; 3N.N. Blokhin Russian Cancer Research Center, Moscow, Russia; 4Omsk Region Clinical Oncologic Dispensary, Russia; 5Instituto Nacional de Câncer - Hospital do Câncer II, Rio de Janeiro, Brazil; 6Lviv Regional Oncology Dispensary, Ukraine; 7Republic Clinical Oncology Dispensary of the Ministry of Healthcare of Republic of Bashkortostan, Ufa, Russia; 8Dnipropetrovsk Medical Academy, Dnipro, Ukraine; 9University of Milan-Bicocca and European Institute of Oncology (IEO) IRCCS, Italy; 10National Cancer Institute of the Ministry of Health of Ukraine, Kyiv, Ukraine; 11Instituto de Oncologia do Parana (IOP), Curitiba, Brazil; 12Arkhangelsk Clinical Oncological Dispensary, Russia; 13Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 14Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; 15Charles University and General University Hospital in Prague, Czech Republic; 16University of Debrecen, Hungary; 17Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Spain; 18Sourasky Medical Center, Tel Aviv, Israel; 19Bialostockie Centrum Onkologii im. Marii Sklodowskiej-Curie, Poland; 20Rocky Mountain Cancer Centers, Lakewood, USA; 21Clovis Oncology, Inc., Boulder, USA; 22Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
Presenting Author Disclosures

- Advisory boards: Clovis Oncology, Roche, and Tesaro
Introduction

- The PARP inhibitor rucaparib is approved as monotherapy treatment for patients with BRCA-mutated, relapsed OC who have received ≥2 prior lines of platinum-based chemotherapy\(^1,2\)
 - Approval was based on data from 2 phase 1/2 studies\(^3,4\)

- ARIEL4 (NCT02855944) is a phase 3 confirmatory study evaluating the efficacy and safety of rucaparib vs standard-of-care chemotherapy in patients with BRCA-mutated, relapsed OC
 - Designed in consultation with US FDA and EMA

BRCA, BRCA1 or BRCA2; OC, ovarian cancer; EMA, European Medicines Agency; FDA, Food and Drug Administration; OC, ovarian cancer; PARP, poly(ADP-ribose) polymerase; US, United States.

ARIEL4 Study Population

Patients with:
- Relapsed, high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer
- ≥2 prior chemotherapy regimens, including ≥1 platinum-based regimen\(^a\)
- Deleterious germline or somatic BRCA mutation
- No prior PARP inhibitor or single-agent paclitaxel treatment

Platinum status
- Resistant
- Partially sensitive
- Fully sensitive

Treatment
- Rucaparib 600 mg BID
- Weekly paclitaxel
- Platinum-based chemotherapy\(^b\)

\(^a\)With treatment-free interval ≥6 months following first chemotherapy received. \(^b\)At investigator’s discretion.

BID, twice daily; BRCA, BRCA1 or BRCA2; PARP, poly(ADP-ribose) polymerase; PFI, progression-free interval.
ARIEL4 Study Schema

Treatment
28-day cycles

- **Rucaparib**
 600 mg BID
 (n=233)

- **Standard-of-care chemotherapy**
 (n=116)
 - If platinum-resistant or partially platinum-sensitive: paclitaxel
 - If fully platinum-sensitive: single-agent platinum or doublet chemotherapy

Follow-up
28 days after last treatment dose, then long-term follow-up every 8 weeks

Optional crossover
(n=74/116; 64%)
Patients in the chemotherapy group could crossover to rucaparib upon PD

Randomization stratification factor: Platinum status (platinum-resistant, partially platinum-sensitive, fully platinum sensitive)

Notes:

- At investigator’s discretion.
- Per RECIST.
- Platinum resistant: PFI \geq6–<12 months, partially platinum sensitive: PFI \geq12 months.
- BID, twice daily; BRCA, BRCA1 or BRCA2; PARP, poly(ADP-ribose) polymerase; PD, progressive disease; PFI, progression-free interval; RECIST, Response Evaluation Criteria In Solid Tumors, version 1.1.
Analysis Populations

ITT population
All randomized patients
- 349 randomized
 - 233 assigned rucaparib
 - 116 assigned chemotherapy
 - Excluded from efficacy population:
 • 13 BRCA reversion

Efficacy population
Patients with deleterious BRCA mutations, excluding those with BRCA reversion mutations
- 233 assigned rucaparib
 - 220 from rucaparib group
 - 44 treatment ongoing
- 116 assigned chemotherapy
 - 105 from chemotherapy group
 - 5 treatment ongoing

Excluded from efficacy population:
• 1 non-BRCA
• 10 BRCA reversion

BRCA reversion mutations restoring BRCA protein function have been associated with resistance to platinum and to PARP inhibitors.1
BRCA, BRCA1 or BRCA2; ITT, intent to treat; PARP, poly(ADP-ribose) polymerase.
Statistical Analysis Plan for Efficacy Endpoints

Efficacy Population
(Patients with deleterious BRCA mutations, excluding those with BRCA reversion mutations)

- **Primary Endpoint**
 - Investigator-assessed PFS

- **Secondary Endpoints**
 - ORR
 - DOR
 - ORR by RECIST and/or GCIG CA-125 response
 - PRO based on EORTC QLQ-C30 Global Health status

ITT Population
(All randomized patients)

- **Primary Endpoint**
 - Investigator-assessed PFS

- **Secondary Endpoints**
 - ORR
 - DOR
 - ORR by RECIST and/or GCIG CA-125 response
 - PRO based on EORTC QLQ-C30 Global Health status

- Overall survival is a standalone efficacy endpoint outside of the step-down analysis

Definitions

- BRCA, *BRCA1* or *BRCA2*: CA-125, cancer antigen 125; DOR, duration of response; EORTC QLQ, European Organization for Research and Treatment of Cancer quality of life questionnaire; GCIG, Gynecological Cancer Intergroup; ITT, intent to treat; ORR, objective response rate; PFS, progression-free survival; PRO, patient-reported outcomes; RECIST, Response Evaluation Criteria In Solid Tumors, version 1.1.
Baseline Patient Characteristics: ITT Population

<table>
<thead>
<tr>
<th></th>
<th>Rucaparib (n=233)</th>
<th>Chemotherapy (n=116)</th>
<th>Overall (N=349)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>58.0 (38–81)</td>
<td>58.5 (38–85)</td>
<td>58.0 (38–85)</td>
</tr>
<tr>
<td>Geographic region, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central/Eastern Europe</td>
<td>135 (57.9)</td>
<td>67 (57.8)</td>
<td>202 (57.9)</td>
</tr>
<tr>
<td>Northern/Southern Europe</td>
<td>59 (25.3)</td>
<td>35 (30.2)</td>
<td>94 (26.9)</td>
</tr>
<tr>
<td>Northern/South America</td>
<td>39 (16.7)</td>
<td>14 (12.1)</td>
<td>53 (15.2)</td>
</tr>
<tr>
<td>Median time since cancer diagnosis, months (range)</td>
<td>43 (13–185)</td>
<td>44 (14–140)</td>
<td>43 (13–185)</td>
</tr>
<tr>
<td>Diagnosis, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epithelial ovarian cancer</td>
<td>220 (94.4)</td>
<td>111 (95.7)</td>
<td>331 (94.8)</td>
</tr>
<tr>
<td>Fallopian tube cancer</td>
<td>7 (3.0)</td>
<td>3 (2.6)</td>
<td>10 (2.9)</td>
</tr>
<tr>
<td>Primary peritoneal cancer</td>
<td>6 (2.6)</td>
<td>2 (1.7)</td>
<td>8 (2.3)</td>
</tr>
<tr>
<td>Histology, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>208 (89.3)</td>
<td>105 (90.5)</td>
<td>313 (89.7)</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>18 (7.7)</td>
<td>6 (5.2)</td>
<td>24 (6.9)</td>
</tr>
<tr>
<td>Other</td>
<td>7 (3.0)</td>
<td>5 (4.3)</td>
<td>12 (3.4)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>125 (53.6)</td>
<td>72 (62.1)</td>
<td>197 (56.4)</td>
</tr>
<tr>
<td>1</td>
<td>108 (46.4)</td>
<td>44 (37.9)</td>
<td>152 (43.6)</td>
</tr>
<tr>
<td>BRCA germline status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germline</td>
<td>198 (85.0)</td>
<td>95 (81.9)</td>
<td>293 (84.0)</td>
</tr>
<tr>
<td>Somatic</td>
<td>35 (15.0)</td>
<td>19 (16.4)</td>
<td>54 (15.5)</td>
</tr>
<tr>
<td>Not available</td>
<td>0</td>
<td>2 (1.7)</td>
<td>2 (0.6)</td>
</tr>
</tbody>
</table>

BRCA, BRCA1 or BRCA2; ECOG PS, Eastern Cooperative Oncology Group performance status; ITT, intent to treat.
Prior Anti-Cancer Treatment, Platinum Status, and Disease Burden: ITT Population

*Randomization stratification factor; platinum resistant: PFI ≥1–<6 months, partially platinum sensitive: PFI ≥6–<12 months, fully platinum sensitive: PFI ≥12 months.

ITT, intent to treat; PFI, progression-free interval.

<table>
<thead>
<tr>
<th>Prior chemotherapy regimens, n (%)</th>
<th>Rucaparib (n=233)</th>
<th>Chemotherapy (n=116)</th>
<th>Overall (N=349)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>134 (57.5)</td>
<td>68 (58.6)</td>
<td>202 (57.9)</td>
</tr>
<tr>
<td>3–5</td>
<td>88 (37.8)</td>
<td>44 (37.9)</td>
<td>132 (37.8)</td>
</tr>
<tr>
<td>≥6</td>
<td>11 (4.7)</td>
<td>4 (3.4)</td>
<td>15 (4.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prior platinum-based regimens, n (%)</th>
<th>Rucaparib (n=233)</th>
<th>Chemotherapy (n=116)</th>
<th>Overall (N=349)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 (5.2)</td>
<td>6 (5.2)</td>
<td>18 (5.2)</td>
</tr>
<tr>
<td>2</td>
<td>156 (67.0)</td>
<td>74 (63.8)</td>
<td>230 (65.9)</td>
</tr>
<tr>
<td>≥3</td>
<td>65 (27.9)</td>
<td>36 (31.0)</td>
<td>101 (28.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prior nonplatinum regimens immediately before randomization, n (%)</th>
<th>Rucaparib (n=233)</th>
<th>Chemotherapy (n=116)</th>
<th>Overall (N=349)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>179 (76.8)</td>
<td>92 (79.3)</td>
<td>271 (77.7)</td>
</tr>
<tr>
<td>≥1</td>
<td>54 (23.2)</td>
<td>24 (20.7)</td>
<td>78 (22.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median PFI after last dose of prior platinum regimen, months (range)</th>
<th>Rucaparib (n=233)</th>
<th>Chemotherapy (n=116)</th>
<th>Overall (N=349)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.6 (1.1–67.4)</td>
<td>5.8 (1.0–90.1)</td>
<td>5.7 (1.0–90.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Platinum status, n (%)</th>
<th>Rucaparib (n=233)</th>
<th>Chemotherapy (n=116)</th>
<th>Overall (N=349)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum resistant</td>
<td>120 (51.5)</td>
<td>59 (50.9)</td>
<td>179 (51.3)</td>
</tr>
<tr>
<td>Partially platinum sensitive</td>
<td>65 (27.9)</td>
<td>31 (26.7)</td>
<td>96 (27.5)</td>
</tr>
<tr>
<td>Fully platinum sensitive</td>
<td>48 (20.6)</td>
<td>26 (22.4)</td>
<td>74 (21.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurable disease at baseline, n (%)</th>
<th>Rucaparib (n=233)</th>
<th>Chemotherapy (n=116)</th>
<th>Overall (N=349)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>224 (96.1)</td>
<td>106 (91.4)</td>
<td>330 (94.6)</td>
</tr>
</tbody>
</table>
Primary Endpoint – Investigator-assessed PFS: Efficacy Population

At risk (events)
- Rucaparib (n=220)
 - 220 (0)
 - 121 (75)
 - 53 (134)
 - 23 (158)
 - 11 (165)
 - 3 (168)
 - 1 (168)
 - 0 (168)
- Chemotherapy (n=105)
 - 105 (0)
 - 42 (50)
 - 9 (78)
 - 4 (82)
 - 1 (84)
 - 0 (85)
 - 0 (85)

HR and associated P value calculated using a stratified Cox proportional hazards model.
HR, hazard ratio; PFS, progression-free survival.
Primary Endpoint – Investigator-assessed PFS: ITT Population

HR and associated P value calculated using a stratified Cox proportional hazards model.
HR, hazard ratio; ITT, intent to treat; PFS, progression-free survival.
Investigator-assessed PFS: BRCA Reversion Mutation Subgroup

HR, 2.77
95% CI, 0.99–7.76

Median, mo
Rucaparib (n=13) 2.9 1.8–4.2
Chemotherapy (n=10) 5.5 1.9–6.6

HR, 2.77
95% CI, 0.99–7.76

HR calculated using a stratified Cox proportional hazards model. \(P \) value was significant for treatment by BRCA reversion mutation (yes vs no) interaction test (\(P = 0.0097 \)).
BRCA, \(BRCA1 \) or \(BRCA2 \); HR, hazard ratio; PFS, progression-free survival.
Secondary Endpoints – Response: Efficacy Population

<table>
<thead>
<tr>
<th></th>
<th>Rucaparib</th>
<th>Chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECIST ORR, n/N (%) [95% CI]^a</td>
<td>85/211 (40.3) [33.6–47.2]</td>
<td>31/96 (32.3) [23.1–42.6]</td>
</tr>
<tr>
<td></td>
<td>P=0.13^b</td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>10 (4.7)</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Partial response</td>
<td>75 (35.5)</td>
<td>29 (30.2)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>77 (36.5)</td>
<td>38 (39.6)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>25 (11.8)</td>
<td>15 (15.6)</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>24 (11.4)</td>
<td>12 (12.5)</td>
</tr>
<tr>
<td>RECIST and/or CA-125 response, n/N (%) [95% CI]^c</td>
<td>110/217 (50.7) [43.8–57.5]</td>
<td>44/101 (43.6) [33.7–53.8]</td>
</tr>
</tbody>
</table>

- Data were similar for the ITT population:
 - RECIST ORR: rucaparib, 37.9% (95% CI, 31.6–44.7) vs chemotherapy, 30.2% (95% CI, 21.7–39.9)
 - Median DOR: rucaparib, 9.4 months vs chemotherapy, 7.2 months (HR^d, 0.56 [95% CI, 0.34–0.93])

^a Patients with measurable disease at baseline. ^b Per Stratified Cochran-Mantel-Haenszel test. ^c Patients with measurable disease at baseline and/or evaluable by CA-125. ^d Per Cox proportional hazards model. CA-125, cancer antigen 125; DOR, duration of response; HR, hazard ratio; ITT, intent to treat; ORR, objective response rate; RECIST, Response Evaluation Criteria In Solid Tumors, version 1.1.
Secondary Endpoint – Change From Baseline in EORTC QLQ-C30 Global Health Status

<table>
<thead>
<tr>
<th>Efficacy Population</th>
<th>ITT Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib (n=197)</td>
<td>Rucaparib (n=207)</td>
</tr>
<tr>
<td>Chemotherapy (n=91)</td>
<td>Chemotherapy (n=101)</td>
</tr>
<tr>
<td>LS Mean (SE)(^a)</td>
<td>LS Mean (SE)(^a)</td>
</tr>
<tr>
<td>0.5 (0.55)</td>
<td>0.6 (0.54)</td>
</tr>
<tr>
<td>0.3 (0.86)</td>
<td>0.4 (0.82)</td>
</tr>
<tr>
<td>LS mean difference (SE)(^b)</td>
<td>LS mean difference (SE)(^b)</td>
</tr>
<tr>
<td>0.2 (1.00); 95% CI, -1.8 to 2.2</td>
<td>0.3 (0.96); 95% CI, -1.6 to 2.2</td>
</tr>
</tbody>
</table>

Data were analyzed using a repeated measures ANCOVA model, with the baseline value as a covariate, and treatment and randomization stratification as factors.

\(^a\)LS mean change from baseline during first 6 cycles. \(^b\)Rucaparib vs chemotherapy.

ANCOVA, analysis of covariance; D, day; EORTC QLQ, European Organization for Research and Treatment of Cancer quality of life questionnaire; ITT, intent to treat; LS, least square; SE, standard error.
Most Common TEAEs (≥20% in Either Group)

- Median treatment duration: rucaparib, 7.3 months (range <1–41); chemotherapy, 3.6 months (range <1–25)
- Nineteen (8.2%) patients in the rucaparib group and 14 (12.4%) in the chemotherapy group discontinued due to TEAEb
- MDS/AML was reported by 4 patients in the rucaparib group (1 during treatment, 3 during long-term follow-up) and no patients in the chemotherapy group

aFour patients (rucaparib, 1; chemotherapy, 3) discontinued before receiving study treatment and are excluded from the safety population. bExcluding disease progression. ALT, alanine aminotransferase; AML, acute myeloid leukemia; AST, aspartate aminotransferase; MDS, myelodysplastic syndrome; TEAE, treatment-emergent adverse event.
Conclusions

• Patients with BRCA-mutated advanced, relapsed OC who received rucaparib had a significant improvement in PFS vs standard-of-care chemotherapy.

• The rucaparib safety profile was consistent with that reported in prior studies.

• This is the first prospective report from a randomized study demonstrating that the presence of a BRCA reversion mutation predicts for primary resistance to rucaparib.

• Overall survival will be presented once death events are mature (at visit cutoff, 51% of death events had occurred).

BRCA, BRCA1 or BRCA2; OC, ovarian cancer; PFS, progression-free survival.
Acknowledgments

ARIEL4 co-coordinating investigators: Rebecca Kristeleit, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
Amit Oza, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

ARIEL4 principal investigators:

- **Brazil**
 - Luciano Biela
 - Eliana da Silva
 - Rosane de Sant’ Ana
 - Fabio Andre Franke
 - Roberto Hegg
 - Andreia Cristina de Melo
 - Yeni Veronica Neron
 - Carlos Eduardo Paiva
 - Luciana Spillari Viola

- **Czech Republic**
 - David Cibula
 - Jaroslav Klat
 - Jana Prausova
 - Maria Zvarikova

- **Hungary**
 - Andrea Bagameri
 - Róbert Póka

- **Italy**
 - Nicoletta Colombo
 - Sandro Pignata
 - Francesco Raspagliesi
 - Roberto Sabbatini
 - Giovanni Scambia
 - Paolo Scolo
 - Giorgio Valabrega
 - Claudio Zamagni

- **Russia**
 - Mikhail Dvorkin
 - Alexander Fedenko
 - Dmitriy Kirtbaya
 - Igor Lifirenko
 - Alia Lisyanskaya
 - Vladimir Moiseyenko
 - Marina Nechaeva
 - Sergey Orlov
 - Elena Ovchinnikova
 - Ekaterina Popova
 - Irina Rakhatmutulina
 - Mikhail Ryazantsev
 - Pavel Skopin
 - Vladimir Vladimirov

- **Ukraine**
 - Igor Bondarenko
 - Yaroslav Shparyk
 - Ivan Sinielnikov
 - Dmytro Sumtsov
 - Valentyn Svintsitskiy
 - Lubov Zhoduleva

- **Canada**
 - Paul Bessette
 - Prafull Ghatage
 - Susie Lau
 - Amit Oza
 - Diane Provencher
 - Johanne Weberpals

- **United Kingdom**
 - Susana Banerjee
 - James Brenton
 - Yvette Drew
 - Marcia Hall
 - Louise Hanna
 - Jurjees Hasan
 - Rebecca Kristeleit
 - Mojca Persic
 - Patricia Roxburgh

- **United States**
 - Sharad Ghamande
 - Ling Ma

- **Brazil**
 - Luciano Biela
 - Eliana da Silva
 - Rosane de Sant’ Ana
 - Fabio Andre Franke
 - Roberto Hegg
 - Andreia Cristina de Melo
 - Yeni Veronica Neron
 - Carlos Eduardo Paiva
 - Luciana Spillari Viola

- **Czech Republic**
 - David Cibula
 - Jaroslav Klat
 - Jana Prausova
 - Maria Zvarikova

- **Hungary**
 - Andrea Bagameri
 - Róbert Póka

- **Italy**
 - Nicoletta Colombo
 - Sandro Pignata
 - Francesco Raspagliesi
 - Roberto Sabbatini
 - Giovanni Scambia
 - Paolo Scolo
 - Giorgio Valabrega
 - Claudio Zamagni

- **Russia**
 - Mikhail Dvorkin
 - Alexander Fedenko
 - Dmitriy Kirtbaya
 - Igor Lifirenko
 - Alia Lisyanskaya
 - Vladimir Moiseyenko
 - Marina Nechaeva
 - Sergey Orlov
 - Elena Ovchinnikova
 - Ekaterina Popova
 - Irina Rakhatmutulina
 - Mikhail Ryazantsev
 - Pavel Skopin
 - Vladimir Vladimirov

- **Ukraine**
 - Igor Bondarenko
 - Yaroslav Shparyk
 - Ivan Sinielnikov
 - Dmytro Sumtsov
 - Valentyn Svintsitskiy
 - Lubov Zhoduleva

- **Canada**
 - Paul Bessette
 - Prafull Ghatage
 - Susie Lau
 - Amit Oza
 - Diane Provencher
 - Johanne Weberpals

- **United Kingdom**
 - Susana Banerjee
 - James Brenton
 - Yvette Drew
 - Marcia Hall
 - Louise Hanna
 - Jurjees Hasan
 - Rebecca Kristeleit
 - Mojca Persic
 - Patricia Roxburgh

- **United States**
 - Sharad Ghamande
 - Ling Ma

…and all ARIEL4 study patients and their families and caregivers

This research was sponsored by Clovis Oncology, Inc.
Medical writing and editorial support funded by Clovis Oncology was provided by Nathan Yardley and Frederique Evans of Ashfield MedComms, an Ashfield Health Company.