Postprogression Outcomes in Patients With Ovarian Carcinoma Associated With a Mutation in a Non-BRCA Homologous Recombination Repair Gene Receiving Rucaparib Maintenance Treatment: Results From the Phase 3 Study ARIEL3

David M. O’Malley,1 Amit M. Oza,2 Domenica Lorusso,3 Carol Aghajanian,4 Ana Oaknin,5 Andrew Dean,6 Nicoletta Colombo,7 Johanne I. Weberpals,8 Andrew R. Clamp,9 Giovanni Scambia,3 Alexandra Leary,10 Robert W. Holloway,11 Margarita Amenedo Gancedo,12 Peter C. Fong,13 Jeffrey C. Goh,14 Deborah K. Armstrong,15 Susana Banerjee,16 Jesus García-Donas,17 Elizabeth M. Swisher,18 Terri Cameron,19 Lara Maloney,20 Sandra Goble,20 Kevin K. Lin,20 Jonathan A. Ledermann,21 Robert L. Coleman22

1The Ohio State University, James Cancer Center, Columbus, OH, USA; 2Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; 3Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; 4Memorial Sloan Kettering Cancer Center, New York, NY, USA; 5Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology, Barcelona, Spain; 6St. John of God Subiaco Hospital, Subiaco, Australia; 7European Institute of Oncology IRCCS and University of Milan-Bicocca, Milan, Italy; 8Ottawa Hospital Research Institute, Ottawa, ON, Canada; 9The Christie NHS Foundation Trust and University of Manchester, Manchester, UK; 10Gustave Roussy Cancer Center, INSERM U981, and Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens, Villejuif, France; 11Florida Hospital Cancer Institute, Orlando, FL, USA; 12Oncology Center of Galicia, La Coruña, Spain; 13Auckland City Hospital, Grafton, Auckland, New Zealand; 14Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, Australia, and University of Queensland, St. Lucia, Australia; 15Johns Hopkins University School of Medicine, Baltimore, MD, USA; 16The Royal Marsden NHS Foundation Trust, London, UK; 17HM Hospitales—Centro Integral Oncológico Hospital de Madrid Clara Campal, Madrid, Spain; 18University of Washington, Seattle, WA, USA; 19Clovis Oncology UK Ltd., Cambridge, UK; 20Clovis Oncology, Inc., Boulder, CO, USA; 21UCL Cancer Institute, University College London and UCL Hospitals, London, UK; 22The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Presenting Author Disclosures

• Advisory boards: Clovis Oncology, AstraZeneca, Gynecologic Oncology Group, Janssen, Myriad, and Tesaro
• Steering committees: Clovis Oncology, Amgen, and ImmunoGen
• Consultancy: AbbVie, Ambry, AstraZeneca, Health Analytics, and Tesaro
Introduction

• Maintenance therapy for patients with recurrent ovarian cancer is intended to extend PFS without compromising postprogression survival

• In the phase 3 ARIEL3 study (CO-338-014; NCT01968213), rucaparib maintenance treatment significantly improved PFS vs placebo in all predefined patient cohorts

 ○ Greatest effects were seen in carcinomas deficient in HRR (eg, a mutation in BRCA or other HRR pathway gene, or high genomic LOH)

• Here, we analyzed postprogression outcomes to evaluate the durability of the clinical benefit of rucaparib maintenance treatment following disease progression in the subgroup of patients with tumors associated with a mutation in a prespecified, non-BRCA HRR gene

HRR, homologous recombination repair; LOH, loss of heterozygosity; PFS, progression-free survival.
ARIEL3 Study Design

Patient eligibility
- High-grade serous or endometrioid epithelial ovarian, fallopian tube, or primary peritoneal cancers
- Sensitive to penultimate platinum
- Responding to most recent platinum (CR or PR)*
- CA-125 within normal range
- No restriction on size of residual tumor
- ECOG PS ≤1
- No prior PARP inhibitors

Stratification
- HRR status by NGS mutation analysis
 - BRCA1 or BRCA2
 - Non-BRCA HRR gene
 - None of the above
- Response to recent platinum
 - CR
 - PR
- Progression-free interval after penultimate platinum
 - 6 to ≤12 months
 - >12 months

Treatment phase
- Disease progression assessment every 12 weeks

<table>
<thead>
<tr>
<th>Rucaparib 600 mg BID</th>
<th>n=375</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo BID</td>
<td>n=189</td>
</tr>
</tbody>
</table>

Randomization 2:1
- Treatment phase
- Disease progression assessment every 12 weeks

Long-term follow-up phase
- Overall survival
- Subsequent anticancer treatment, including best response and PD on each regimen
- Secondary malignancies

Assessments every 12 weeks
- Overall survival
- Subsequent anticancer treatment, including best response and PD on each regimen
- Secondary malignancies

*CR (defined by RECIST) or PR (defined by RECIST and/or a GCIG CA-125 response [CA-125 within normal range]) maintained until entry to ARIEL3 (≤8 weeks of last dose of chemotherapy).

BID, twice daily; CA-125, cancer antigen 125; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; GCIG, Gynecological Cancer InterGroup; HRR, homologous recombination repair; NGS, next-generation sequencing; PARP, poly(ADP-ribose) polymerase; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors version 1.1.

ARIEL3 Study Design

Patient eligibility
- High-grade serous or endometrioid epithelial ovarian, fallopian tube, or primary peritoneal cancers
- Sensitive to penultimate platinum
- Responding to most recent platinum (CR or PR)*
- CA-125 within normal range
- No restriction on size of residual tumor
- ECOG PS ≤1
- No prior PARP inhibitors

Stratification
- HRR status by NGS mutation analysis
 - BRCA1 or BRCA2
 - Non-BRCA HRR gene
 - None of the above

Treatment phase
- Disease progression assessment every 12 weeks

Rucaparib
600 mg BID
n=375

Long-term follow-up phase
- Assessments every 12 weeks
- Overall survival
- Subsequent anticancer treatment, including best response and PD on each regimen
- Secondary malignancies

Prespecified Non-BRCA HRR Genes

<table>
<thead>
<tr>
<th>ATM</th>
<th>ATR</th>
<th>ATRX</th>
<th>BARD1</th>
<th>BLM</th>
<th>BRIP1</th>
<th>CHEK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEK2</td>
<td>FANCA</td>
<td>FANCC</td>
<td>FANCD2</td>
<td>FANCE</td>
<td>FANCF</td>
<td>FANCG</td>
</tr>
<tr>
<td>FANCI</td>
<td>FANCL</td>
<td>FANCM</td>
<td>MRE11A</td>
<td>NBN</td>
<td>PALB2</td>
<td>RAD50</td>
</tr>
<tr>
<td>RAD51</td>
<td>RAD51B</td>
<td>RAD51C</td>
<td>RAD51D</td>
<td>RAD52</td>
<td>RAD54L</td>
<td>RPA1</td>
</tr>
</tbody>
</table>

- Mutations in BARD1, BRIP1, PALB2, RAD51C, and RAD51D are significantly associated with hereditary ovarian cancer

*CR (defined by RECIST) or PR (defined by RECIST and/or a GCIG CA-125 response [CA-125 within normal range]) maintained until entry to ARIEL3 (≤8 weeks of last dose of chemotherapy).
BID, twice daily; CA-125, cancer antigen 125; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; GCIG, Gynecological Cancer InterGroup; HRR, homologous recombination repair; NGS, next-generation sequencing; PARP, poly(ADP-ribose) polymerase; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors version 1.1.
ARIEL3 Study Design

Patient eligibility
- High-grade serous or endometrioid epithelial ovarian, fallopian tube, or primary peritoneal cancers
- Sensitive to penultimate platinum
- Responding to penultimate platinum (CR or PR)
- CA-125 within normal range
- No restriction on size of residual tumor
- ECOG PS ≤1
- No prior PARP inhibitor

Stratification
- HRR status by NGS mutation analysis
 - BRCA1 or BRCA2
 - Non-BRCA HRR gene
 - None of the above

Treatment phase
- Disease progression assessment every 12 weeks

Long-term follow-up phase
- Assessments every 12 weeks

Prespecified Non-BRCA HRR Genes

<table>
<thead>
<tr>
<th>ATM</th>
<th>ATR</th>
<th>ATRX</th>
<th>BARD1</th>
<th>BLM</th>
<th>BRIP1</th>
<th>CHEK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEK2</td>
<td>FANCA</td>
<td>FANCC</td>
<td>FANCD2</td>
<td>FANCE</td>
<td>FANCF</td>
<td>FANCG</td>
</tr>
<tr>
<td>FANCI</td>
<td>FANCL</td>
<td>FANCM</td>
<td>MRE11A</td>
<td>NBN</td>
<td>PALB2</td>
<td>RAD50</td>
</tr>
<tr>
<td>RAD51</td>
<td>RAD51B</td>
<td>RAD51C</td>
<td>RAD51D</td>
<td>RAD52</td>
<td>RAD54L</td>
<td>RPA1</td>
</tr>
</tbody>
</table>

- Mutations in **BARD1**, **BRIP1**, **PALB2**, **RAD51C**, and **RAD51D** are significantly associated with hereditary ovarian cancer
- Mutations in **PALB2**, **RAD51C**, and **RAD51D** are causally associated with clinical sensitivity to PARP inhibitors

*CR (defined by RECIST) or PR (defined by RECIST and/or a GCIG CA-125 response [CA-125 within normal range]) maintained until entry to ARIEL3 (≤8 weeks of last dose of chemotherapy). BID, twice daily; CA-125, cancer antigen 125; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; GCIG, Gynecological Cancer InterGroup; HRR, homologous recombination repair; NGS, next-generation sequencing; PARP, poly(ADP-ribose) polymerase; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors version 1.1.

Genomic Characteristics of Carcinomas Associated With a Non-\textit{BRCA} HRR Gene Mutation in ARIEL3

Rucaparib-treated patients (n=28)

<table>
<thead>
<tr>
<th>Pt</th>
<th>HRR gene</th>
<th>Mutation type</th>
<th>Mutation zyosity in tumora</th>
<th>Genomic LOH status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATM</td>
<td>Frameshift</td>
<td>Heterozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>2</td>
<td>ATM</td>
<td>Nonsense</td>
<td>NA</td>
<td>Unknown</td>
</tr>
<tr>
<td>3</td>
<td>ATR</td>
<td>Frameshift</td>
<td>Heterozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>4</td>
<td>ATR</td>
<td>Splice site</td>
<td>NA</td>
<td>LOH low</td>
</tr>
<tr>
<td>5</td>
<td>BARD1</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>6</td>
<td>CHEK2</td>
<td>Splice site</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>7</td>
<td>CHEK2</td>
<td>Deletion</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>8</td>
<td>FANCD2</td>
<td>Nonsense</td>
<td>Heterozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>9</td>
<td>FANCD2</td>
<td>Splice site</td>
<td>NA</td>
<td>LOH low</td>
</tr>
<tr>
<td>10</td>
<td>FANC1</td>
<td>Frameshift</td>
<td>NA</td>
<td>LOH low</td>
</tr>
<tr>
<td>11</td>
<td>FANCL</td>
<td>Frameshift</td>
<td>Heterozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>12</td>
<td>FANCL</td>
<td>Frameshift</td>
<td>NA</td>
<td>LOH high</td>
</tr>
<tr>
<td>13</td>
<td>FANCM</td>
<td>Frameshift</td>
<td>NA</td>
<td>LOH low</td>
</tr>
<tr>
<td>14</td>
<td>RAD50</td>
<td>Frameshift</td>
<td>Heterozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>15</td>
<td>RAD50</td>
<td>Frameshift</td>
<td>NA</td>
<td>Unknown</td>
</tr>
<tr>
<td>16</td>
<td>RAD51C</td>
<td>Splice site</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>17</td>
<td>RAD51C</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>18</td>
<td>RAD51C</td>
<td>Frameshift</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>19</td>
<td>RAD51C</td>
<td>Splice site</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>20</td>
<td>RAD51C</td>
<td>Splice site</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>21</td>
<td>RAD51C</td>
<td>Frameshift</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>22</td>
<td>RAD51D</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>23</td>
<td>RAD51D</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>24</td>
<td>RAD51D</td>
<td>Frameshift</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>25</td>
<td>RAD51D</td>
<td>Frameshift</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>26</td>
<td>RAD54L</td>
<td>Frameshift</td>
<td>Heterozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>27</td>
<td>RAD54L</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>28</td>
<td>RAD54L</td>
<td>Frameshift</td>
<td>NA</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

aBased on Foundation Medicine sequencing results, in which a tumor is classified as homozygous if both copies in the tumor carry the mutant allele and heterozygous if both the wild-type and mutant alleles are present. HRR, homologous recombination repair; LOH, loss of heterozygosity; NA, not available; Pt, patient.

Placebo-treated patients (n=15)

<table>
<thead>
<tr>
<th>Pt</th>
<th>HRR gene</th>
<th>Mutation type</th>
<th>Mutation zyosity in tumora</th>
<th>Genomic LOH status</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>BRIP1</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>30</td>
<td>BRIP1</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>31</td>
<td>BRIP1</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>32</td>
<td>BRIP1</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>33</td>
<td>BRIP1</td>
<td>Frameshift</td>
<td>Homozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>34</td>
<td>FANCA</td>
<td>Splice site</td>
<td>NA</td>
<td>Unknown</td>
</tr>
<tr>
<td>35</td>
<td>FANCC</td>
<td>Frameshift</td>
<td>Heterozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>36</td>
<td>FANCD2</td>
<td>Frameshift</td>
<td>Heterozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>37</td>
<td>FANCE</td>
<td>Frameshift</td>
<td>Homozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>38</td>
<td>FANCF</td>
<td>Frameshift</td>
<td>NA</td>
<td>Unknown</td>
</tr>
<tr>
<td>39</td>
<td>RAD50</td>
<td>Splice site</td>
<td>NA</td>
<td>LOH low</td>
</tr>
<tr>
<td>40</td>
<td>RAD51C</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>41</td>
<td>RAD51C</td>
<td>Deletion</td>
<td>Homozygous</td>
<td>LOH low</td>
</tr>
<tr>
<td>42</td>
<td>RAD51D</td>
<td>Nonsense</td>
<td>Homozygous</td>
<td>LOH high</td>
</tr>
<tr>
<td>43</td>
<td>RAD54L</td>
<td>Splice site</td>
<td>Heterozygous</td>
<td>LOH low</td>
</tr>
</tbody>
</table>

aBased on Foundation Medicine sequencing results, in which a tumor is classified as homozygous if both copies in the tumor carry the mutant allele and heterozygous if both the wild-type and mutant alleles are present. HRR, homologous recombination repair; LOH, loss of heterozygosity; NA, not available; Pt, patient.
Initial Results: PFS and Safety from ARIEL3 in Patients With Carcinomas Associated With a Non-\textit{BRCA} HRR Gene Mutation

- The safety profile of rucaparib in patients with a carcinoma associated with a non-\textit{BRCA} HRR gene mutation was consistent with the overall safety population.
 - In the non-\textit{BRCA} HRR gene mutation subgroup vs the overall population, incidence of grade ≥ 3 AEs and AEs leading to dose reduction and/or treatment interruption of rucaparib were 55.6\% vs 59.7\% and 66.7\% vs 71.8\%, respectively.

Visit cutoff date for PFS April 15, 2017; visit cutoff date for safety December 31, 2017.
AE, adverse event; HR, hazard ratio; HRR, homologous recombination repair; PFS, progression-free survival.
Schema Comparing Different Efficacy Endpoints

Chemotherapy → Rucaparib maintenance treatment or placebo → First subsequent therapy → Second subsequent therapy

- **PFS**, time from randomization to disease progression or death
- **TFST**, time from randomization to start of first subsequent therapy
- **CFI**, time from the last dose of prior chemotherapy to initiation of first subsequent anticancer therapy
- **PFS2**, time from randomization to disease progression on subsequent line of therapy or death
- **TSST**, time from randomization to start of second subsequent therapy

PD, progressive disease; R, randomization.
Patients With Carcinomas Associated With a Non-BRCA HRR Gene Mutation: Time to First Subsequent Therapy

<table>
<thead>
<tr>
<th></th>
<th>Rucaparib (n=28)</th>
<th>Placebo (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median, mo</td>
<td>16.9</td>
<td>6.3</td>
</tr>
<tr>
<td>95% CI</td>
<td>8.1–19.3</td>
<td>4.5–9.0</td>
</tr>
<tr>
<td>HR</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>0.06–0.40</td>
<td></td>
</tr>
</tbody>
</table>

Visit cutoff date December 31, 2017.
HR, hazard ratio; PD, progressive disease; R, randomization; TFST, time to first subsequent therapy.
Patients With Carcinomas Associated With a Non-\textit{BRCA} HRR Gene Mutation: Chemotherapy-Free Interval

<table>
<thead>
<tr>
<th></th>
<th>Median, mo</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib (n=28)</td>
<td>18.2</td>
<td>9.9–21.1</td>
</tr>
<tr>
<td>Placebo (n=15)</td>
<td>7.7</td>
<td>6.7–10.9</td>
</tr>
</tbody>
</table>

HR, 0.21
95% CI, 0.09–0.52

Visit cutoff date December 31, 2017.
CFI, chemotherapy-free interval; HR, hazard ratio; PD, progressive disease; R, randomization.
Patients With Carcinomas Associated With a Non-BRCA HRR Gene Mutation: Time to Disease Progression on Subsequent Therapy or Death

At risk (events)

<table>
<thead>
<tr>
<th></th>
<th>Rucaparib</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>28 (0)</td>
<td>15 (0)</td>
</tr>
<tr>
<td></td>
<td>26 (1)</td>
<td>13 (1)</td>
</tr>
<tr>
<td></td>
<td>21 (5)</td>
<td>10 (4)</td>
</tr>
<tr>
<td></td>
<td>15 (10)</td>
<td>4 (9)</td>
</tr>
<tr>
<td></td>
<td>11 (13)</td>
<td>1 (11)</td>
</tr>
<tr>
<td></td>
<td>4 (14)</td>
<td>0 (11)</td>
</tr>
<tr>
<td></td>
<td>1 (15)</td>
<td>0 (15)</td>
</tr>
</tbody>
</table>

Median, mo 95% CI

- Rucaparib (n=28) 21.1 (13.9–NR)
- Placebo (n=15) 17.3 (8.5–23.9)

HR, 0.30
95% CI, 0.12–0.72

Visit cutoff date December 31, 2017.
HR, hazard ratio; HRR, homologous recombination repair; NR, not reached; PD, progressive disease; PFS2, time to disease progression on subsequent line of therapy or death; R, randomization.
Patients With Carcinomas Associated With a Non-\textit{BRCA} HRR Gene Mutation: Time to Second Subsequent Therapy

At risk (events)

<table>
<thead>
<tr>
<th></th>
<th>Rucaparib (n=28)</th>
<th>Placebo (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0)</td>
<td>28 (0)</td>
<td>15 (0)</td>
</tr>
<tr>
<td>6 (1)</td>
<td>26 (1)</td>
<td>13 (1)</td>
</tr>
<tr>
<td>12 (3)</td>
<td>23 (3)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>18 (10)</td>
<td>15 (10)</td>
<td>6 (7)</td>
</tr>
<tr>
<td>24 (12)</td>
<td>11 (12)</td>
<td>2 (9)</td>
</tr>
<tr>
<td>30 (13)</td>
<td>4 (13)</td>
<td>0 (10)</td>
</tr>
<tr>
<td>36 (14)</td>
<td>1 (14)</td>
<td>0 (14)</td>
</tr>
<tr>
<td>42 (14)</td>
<td>0 (14)</td>
<td></td>
</tr>
</tbody>
</table>

Median, mo

- Rucaparib: 24.4, 16.6–NR
- Placebo: 17.9, 10.2–27.3

HR, 0.43
95% CI, 0.18–1.04

Visit cutoff date December 31, 2017.

HR, hazard ratio; HRR, homologous recombination repair; NR, not reached; PD, progressive disease; R, randomization; TSST, time to second subsequent therapy.
Summary of Postprogression Outcomes in Patients With Carcinomas Associated With a BRCA or Non-BRCA HRR Gene Mutation

<table>
<thead>
<tr>
<th></th>
<th>Non-BRCA HRR mutation</th>
<th>BRCA mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rucaparib (n=28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placebo (n=15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rucaparib (n=130)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placebo (n=66)</td>
<td></td>
</tr>
<tr>
<td>TFST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median, mo</td>
<td>16.9</td>
<td>6.3</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.16 (0.06–0.40)</td>
<td>0.28 (0.20–0.41)</td>
</tr>
<tr>
<td>CFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median, mo</td>
<td>18.2</td>
<td>7.7</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.21 (0.09–0.52)</td>
<td>0.28 (0.19–0.41)</td>
</tr>
<tr>
<td>PFS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median, mo</td>
<td>21.1</td>
<td>17.3</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.30 (0.12–0.72)</td>
<td>0.56 (0.38–0.83)</td>
</tr>
<tr>
<td>TSST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median, mo</td>
<td>24.4</td>
<td>17.9</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.43 (0.18–1.04)</td>
<td>0.53 (0.36–0.80)</td>
</tr>
</tbody>
</table>

Visit cutoff date December 31, 2017.
HRs estimated with a Cox proportional hazards model.
CFI, chemotherapy-free interval; HR, hazard ratio; HRR, homologous recombination repair; PFS2, time to disease progression on subsequent therapy or death; TFST, time to first subsequent therapy; TSST, time to second subsequent therapy.
Time on Study Treatment: Patients With Carcinomas Associated With a Non-\textit{BRCA} HRR Mutation

Visit cutoff date December 31, 2017.
HRR, homologous recombination repair.
Time on Study Treatment: Patients With Carcinomas Associated With a Non-**BRCA** HRR Mutation

RAD51C/D gene mutation
- **Rucaparib**: Median time 25.0 months (10 patients)
- **Placebo**: Median time 5.5 months (3 patients)

Other non-BRCA/**RAD51C/D** HRR gene mutation
- **Rucaparib**: Median time 8.6 months (18 patients)
- **Placebo**: Median time 5.5 months (12 patients)

Visit cutoff date December 31, 2017.
HRR, homologous recombination repair; LOH, loss of heterozygosity.
Time on Study Treatment: Patients With Carcinomas Associated With a RAD51C/D Mutation

Visit cutoff date December 31, 2017.
HRR, homologous recombination repair; PFS, progression-free survival.
Time on Study Treatment: Patients With Carcinomas Associated With a *RAD51C/D* Mutation

- Three patients with a *RAD51C/D* mutation had measurable disease at baseline, and all 3 achieved a confirmed response with rucaparib treatment (1 complete response and 2 partial responses)

Visit cutoff date December 31, 2017. PFS, progression-free survival; RECIST, Response evaluation criteria in solid tumors version 1.1.
Time on Study Treatment: Patients With Carcinomas Associated With a RAD51C/D Mutation

• Three patients with a RAD51C/D mutation had measurable disease at baseline, and all 3 achieved a confirmed response with rucaparib treatment (1 complete response and 2 partial responses)

Visit cutoff date December 31, 2017.
PFS, progression-free survival; RECIST, Response evaluation criteria in solid tumors version 1.1.
Conclusions

- Although the number of patients in this subgroup was small, rucaparib improved the clinically meaningful postprogression endpoints TFST, CFI, PFS2, and TSST vs placebo in patients with platinum-sensitive, recurrent ovarian cancer harboring a non-BRCA HRR gene mutation
 - Prior rucaparib treatment did not adversely impact the possibility for patients in this subgroup to benefit from subsequent therapy
- Mutations in a subset of HRR genes, such as RAD51C/D, may confer greater sensitivity to PARP inhibitor treatment
Acknowledgments

ARIEL3 co-coordinating investigators: Robert L. Coleman, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Jonathan A. Ledermann, UCL Cancer Institute, University College London and UCL Hospitals, London, UK

ARIEL3 principal investigators and sites:

AUSTRALIA
M. Buck (Sir Charles Gairdner Hospital)
A. Dean (Saint John of God Subiaco Hospital)
M. L. Friedlander (Prince of Wales Hospital)
J. Guh (Royal Brisbane and Women’s Hospital)
P. Harnett (Westmead Hospital)
G. Kichenassamy (Dinders Medical Centre)
C. Scott (Peter MacCallum Cancer Centre, Melbourne)

BELGIUM
H. Denys (Universiteit Ziekenhuis Gent)
L. Dirix (AZ Sint Augustinus)
I. Vergote (Universiteit Ziekenhuis Leuven)

CANADA
L. Elit (Juravinski Cancer Centre)
P. Ghatage (Tom Baker Cancer Center)
A. Oza (Princess Margaret Hospital)
M. Plante (Centre Hospitalier Universitaire de Quebec)
D. Provencher (Centre Hospitalier de L’Université de Montréal)
J. Weberpals (Institut de Recherche de l’Hospital d’Ottawa)

FRANCE
A. Floquet (Institut Bergonié)
L. Gladieff (Institut Claudius Régaud)
F. Joly (Centre de Lutte contre le Cancer François Baclesse)
A. Leary (Institut de Cancérologie Gustave Roussy)
A. Lortholary (Centre Catherine de Sienne)
J. Lotz (Hôpital Tenon)
J. Medioni (Hôpital Européen Georges-Pompidou)
O. Tredan (Centre Léon Bérard)
B. You (Centre Hospitalier Lyon Sud)

ISRAEL
A. Amit (Rambam Medical Center)
S. Koval (Ayalim Haroshet Medical Centre)
M. Levinov (The Lady Davis Carmel Medical Center)
T. Safra (Tel Aviv Sourasky Medical Center)
R. Shapira-Froinnre (Chair Sheba Medical Center)
S. Stemritt (Rabin Medical Center)

ITALY
A. Bologna (Arciopediata Santa Maria Nuova)
N. Colombo (Istituto Europeo di Oncologia [IROCS])
L. Dirix (Universiteit Ziekenhuis Leuven)
S. Pignata (Istituto Nazionale Tumori, Piacenza)
R. F. Sabattini (Polistico di Medena)
G. Scambia (Istituto Oncologico Universitario Adriano Agostino Gemelli)
S. Tambini (Cattedra Civile degli Infermi)
C. Zamagni (Azienda Ospedaliero-Universitaria di Bologna – Polifunzionale Osorbia Malpighi)

NEW ZEALAND
P. Fong (Auckland City Hospital)
A. O’Donnell (Wellington Regional Hospital)

UNITED KINGDOM
S. N. Banerjee (Royal Marsden Hospital)
A. Clamp (Christie Hospital)
Y. Drew (Freeman Hospital – Northern Centre for Cancer Care)
H. G. Gaba (Imperial College Healthcare NHS Trust)
M. J. Blom (Massachusetts General Hospital)
M. K. Bus (Beth Israel Deaconess Medical Center)
S. K. Chambers (University of Arizona Cancer Center)
L. Chen (University of California, San Francisco)
R. L. Coleman (MD Anderson Cancer Center)
R. W. Haltaway (Florida Hospital Cancer Care)
G. E. Konacny (University of California Los Angeles)
L. Ma (Rocky Mountain Cancer Centers)
M. B. Morgan (University of Pennsylvania)
R. T. Morris (Washington University School of Medicine)
D. M. O’Malley (The Ohio State University, Arthur G. James Cancer Hospital)
B. M. Stemritt (Sylvester Comprehensive Cancer Center)
E. M. Swisher (University of Washington)
T. Vanderkwaak (Hope Women’s Cancer Centers)
M. Yellouch (Memorial Healthcare System)

UNITED STATES

C. Aghaepour (Memorial Sloan Kettering Cancer Center)
D. K. Armstrong (The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins)
M. J. Blom (Massachusetts General Hospital)
M. K. Bus (Beth Israel Deaconess Medical Center)
S. K. Chambers (University of Arizona Cancer Center)
L. Chen (University of California, San Francisco)
R. L. Coleman (MD Anderson Cancer Center)
R. W. Haltaway (Florida Hospital Cancer Care)

… and all ARIEL3 study patients and their families and caregivers

This research was sponsored by Clovis Oncology, Inc. Medical writing and editorial support funded by Clovis Oncology was provided by Stephen Mason and Frederique H. Evans of Ashfield Healthcare Communications.