Postprogression Efficacy Outcomes From the Phase 3 ARIEL3 Study of Rucaparib in Patients With Platinum-Sensitive Recurrent Ovarian Carcinoma Associated With Either BRCA1 or BRCA2 Mutations

Johanne I. Weberpals,1 Amit M. Oza,2 Domenica Lorusso,3 Carol Aghajanian,4 Ana Oaknin,5 Andrew Dean,6 Nicoletta Colombo,7 Andrew R. Clamp,8 Giovanni Scambia,3 Alexandra Leary,9 Robert W. Holloway,10 Margarita Amenedo Gancedo,11 Peter C. Fong,12 Jeffrey C. Goh,13 David M. O’Malley,14 Deborah K. Armstrong,15 Susana Banerjee,16 Jesus García-Donas,17 Elizabeth M. Swisher,18 Terri Cameron,19 Lara Maloney,20 Sandra Goble,20 Robert L. Coleman,21 Jonathan A. Ledermann22

1Ottawa Hospital Research Institute, Ottawa, Canada; 2Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; 3Fondazione Polyclinico Universitario A. Gemelli IRCCS, Rome, Italy; 4Memorial Sloan Kettering Cancer Center, New York, USA; 5Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain; 6St John of God Subiaco Hospital, Subiaco, Australia; 7European Institute of Oncology IRCCS and University of Milan-Bicocca, Italy; 8The Christie NHS Foundation Trust and University of Manchester, UK; 9Gustave Roussy Cancer Center, INSERM U981, and Groupe d’Investigateurs Nationaux pour l’Etude des Cancers Ovariens (GINECO), Villejuif, France; 10AdventHealth Cancer Institute Orlando, USA; 11Oncology Center of Catalonia, La Coruña, Spain; 12Auckland City Hospital and University of Auckland, Grafton, New Zealand; 13Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, Australia, and University of Queensland, St Lucia, Australia; 14The Ohio State University, James Cancer Center, Columbus, USA; 15Johns Hopkins University School of Medicine, Baltimore, USA; 16The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK; 17HM Hospitales—Centro Integral Oncológico Hospital de Madrid Clara Campal, Spain; 18University of Washington, Seattle, USA; 19Clovis Oncology UK Ltd., Cambridge, UK; 20Clovis Oncology, Inc., Boulder, USA; 21US Oncology Research, The Woodlands, USA; 22UCL Cancer Institute, University College London and UCL Hospitals, UK

igcsmeeting.com
Presenting Author Disclosures

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Honoraria/Expenses</th>
<th>Consulting/Advisory Board</th>
<th>Funded Research</th>
<th>Royalties/Patent</th>
<th>Stock Options</th>
<th>Ownership/Equity Position</th>
<th>Employee</th>
<th>Other (please specify)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbbVie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstraZeneca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

• Previous studies showed that patients with advanced OC associated with a \textit{BRCA2} mutation had longer OS following platinum-based chemotherapy than those with a \textit{BRCA1} mutation and those without a \textit{BRCA1} or \textit{BRCA2} mutation1,2

 o This may be due to the differences in the functional roles of these genes:

 ‒ \textit{BRCA2} is more directly involved in the process of homologous recombination repair3

 ‒ \textit{BRCA1} acts upstream and plays a more diverse role in DNA damage response and repair3

• In ARIEL3 (NCT01968213), rucaparib maintenance treatment for recurrent OC significantly improved PFS and postprogression efficacy outcomes versus placebo regardless of biomarker status4,5

 o PFS was also improved in the subgroups of patients with a \textit{BRCA1} (HR, 0.32 [95% CI, 0.19–0.53]) or \textit{BRCA2} mutation (0.12 [0.06–0.26])4

 o TFST, CFI, PFS2, and TSST were all significantly longer with rucaparib than placebo in the overall BRCA cohort5

• This exploratory analysis of ARIEL3 further examined the \textit{BRCA1}- and \textit{BRCA2}-mutant subgroups to assess the durability of the clinical benefit of rucaparib maintenance treatment following disease progression

ARIEL3 Study Design

Patient eligibility
- High-grade serous or endometrioid epithelial ovarian, fallopian tube, or primary peritoneal cancers
- Sensitive to penultimate platinum
- Responding to most recent platinum (CR or PR)*
- CA-125 within normal range
- No restriction on size of residual tumor
- ECOG PS ≤1
- No prior PARP inhibitors

Stratification
- HRR status by NGS mutation analysis
 - BRCA1 or BRCA2
 - Non-BRCA HRR gene
 - None of the above
- Response to recent platinum
 - CR
 - PR
- Progression-free interval after penultimate platinum
 - 6 to ≤12 months
 - >12 months

Treatment phase
Disease progression assessment every 12 weeks
- **Rucaparib**
 - 600 mg BID
 - n=375
- **Placebo**
 - BID
 - n=189

Long-term follow-up phase
Assessments every 12 weeks
- Overall survival
- Subsequent anticancer treatment, including best response and PD on each regimen
- Secondary malignancies

*CR (defined by RECIST) or PR (defined by RECIST and/or a GCIG CA-125 response [CA-125 within normal range]) maintained until entry to ARIEL3 (≤8 weeks of last dose of chemotherapy).

BID, twice daily; CA-125, cancer antigen 125; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; GCIG, Gynecological Cancer InterGroup; HRR, homologous recombination repair; NGS, next-generation sequencing; PARP, poly(ADP-ribose) polymerase; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria In Solid Tumors version 1.1.
Baseline Characteristics and Prior Therapies

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>BRCA1 Rucaparib (n=80)</th>
<th>Placebo (n=37)</th>
<th>BRCA2 Rucaparib (n=50)</th>
<th>Placebo (n=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), y</td>
<td>54 (43–74)</td>
<td>54 (36–84)</td>
<td>61 (42–81)</td>
<td>62 (48–77)</td>
</tr>
<tr>
<td>ECOG PS 0, n (%)</td>
<td>66 (82.5)</td>
<td>23 (62.2)</td>
<td>35 (70.0)</td>
<td>19 (65.5)</td>
</tr>
<tr>
<td>Diagnosis, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epithelial ovarian cancer</td>
<td>65 (81.3)</td>
<td>31 (83.8)</td>
<td>40 (80.0)</td>
<td>25 (86.2)</td>
</tr>
<tr>
<td>Fallopian tube cancer</td>
<td>6 (7.5)</td>
<td>4 (10.8)</td>
<td>5 (10.0)</td>
<td>0</td>
</tr>
<tr>
<td>Primary peritoneal cancer</td>
<td>9 (11.3)</td>
<td>2 (5.4)</td>
<td>5 (10.0)</td>
<td>4 (13.8)</td>
</tr>
<tr>
<td>Histology, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>77 (96.3)</td>
<td>34 (91.9)</td>
<td>49 (98.0)</td>
<td>26 (89.7)</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>2 (2.5)</td>
<td>2 (5.4)</td>
<td>1 (2.0)</td>
<td>2 (6.9)</td>
</tr>
<tr>
<td>Mixed or other</td>
<td>1 (1.3)</td>
<td>1 (2.7)</td>
<td>0</td>
<td>1 (3.4)</td>
</tr>
<tr>
<td>Bulky disease, n (%)</td>
<td>11 (13.8)</td>
<td>6 (16.2)</td>
<td>10 (20.0)</td>
<td>4 (13.8)</td>
</tr>
<tr>
<td>No. of prior chemotherapy regimens, median (range)</td>
<td>2 (2–6)</td>
<td>2 (2–5)</td>
<td>2 (2–5)</td>
<td>2 (2–5)</td>
</tr>
<tr>
<td>Time to progression with penultimate platinum, median (range), mo</td>
<td>13.1 (6.0–105.9)</td>
<td>16.2 (6.4–107.6)</td>
<td>13.8 (6.1–71.5)</td>
<td>12.6 (6.9–58.0)</td>
</tr>
<tr>
<td>Response to last platinum, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR per RECIST</td>
<td>32 (40.0)</td>
<td>14 (37.8)</td>
<td>11 (22.0)</td>
<td>8 (27.6)</td>
</tr>
<tr>
<td>PR per RECIST or serological response per GCIG CA-125 criteria</td>
<td>48 (60.0)</td>
<td>23 (62.2)</td>
<td>39 (78.0)</td>
<td>21 (72.4)</td>
</tr>
</tbody>
</table>

*Bulky residual disease was defined as any tumour >2 cm per blinded independent central review.

CA-125, cancer antigen 125; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; GCIG, Gynecologic Cancer InterGroup; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors version 1.1.
Postprogression Efficacy Endpoints

Chemotherapy → Rucaparib maintenance treatment or placebo → First subsequent therapy → Second subsequent therapy

- **PFS**, time from randomisation to disease progression or death
- **TFST**, time from randomisation to start of first subsequent therapy
- **CFI**, time from the last dose of prior chemotherapy to initiation of first subsequent anticancer therapy
- **PFS2**, time from randomisation to disease progression on subsequent line of therapy or death
- **TSST**, time from randomisation to start of second subsequent therapy

All endpoints are inclusive of the time on rucaparib maintenance treatment or placebo.

*PFS2 and TSST can serve as surrogates for overall survival.

PD, progressive disease; R, randomisation.
Time to First Subsequent Therapy

TFST, time from randomisation to start of first subsequent therapy

Chemotherapy → R → **Rucaparib maintenance treatment or placebo** → PD → **First subsequent therapy** → PD → **Second subsequent therapy**

BRCA1 mutant
- Median, mo: 16.8 (Rucaparib) vs 8.1 (Placebo)
- 95% CI: 11.5–20.3 (Rucaparib) vs 5.1–9.9 (Placebo)
- HR, 0.41
- 95% CI, 0.27–0.64

BRCA2 mutant
- Median, mo: 30.4 (Rucaparib) vs 7.1 (Placebo)
- 95% CI: 17.5–41.4 (Rucaparib) vs 5.4–9.1 (Placebo)
- HR, 0.17
- 95% CI, 0.09–0.33

Visit cutoff 31 December 2019.

P value was significant for treatment by BRCA mutation (BRCA1 vs BRCA2) interaction test (P=0.0167).

HR, hazard ratio; PD, progressive disease; R, randomisation.
Chemotherapy-Free Interval

CFI, time from the last dose of prior chemotherapy to initiation of first subsequent anticancer therapy

BRCA1 mutant

<table>
<thead>
<tr>
<th></th>
<th>Median, mo</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib (n=80)</td>
<td>18.4</td>
<td>13.4–22.6</td>
</tr>
<tr>
<td>Placebo (n=37)</td>
<td>9.4</td>
<td>6.6–11.5</td>
</tr>
<tr>
<td>HR, 0.40</td>
<td></td>
<td>95% CI, 0.26–0.62</td>
</tr>
</tbody>
</table>

BRCA2 mutant

<table>
<thead>
<tr>
<th></th>
<th>Median, mo</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rucaparib (n=50)</td>
<td>36.1</td>
<td>19.1–NR</td>
</tr>
<tr>
<td>Placebo (n=29)</td>
<td>8.7</td>
<td>6.8–11.0</td>
</tr>
<tr>
<td>HR, 0.16</td>
<td></td>
<td>95% CI, 0.08–0.32</td>
</tr>
</tbody>
</table>

At risk (events)

<table>
<thead>
<tr>
<th></th>
<th>Rucaparib</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1 mutant</td>
<td>80 (0)</td>
<td>37 (0)</td>
</tr>
<tr>
<td>BRCA2 mutant</td>
<td>50 (0)</td>
<td>29 (0)</td>
</tr>
</tbody>
</table>

Visit cutoff 31 December 2019.

P value was significant for treatment by BRCA mutation (**BRCA1** vs **BRCA2**) interaction test (*P*=0.0230).

HR, hazard ratio; NR, not reached; PD, progressive disease; R, randomisation.
Progression-Free Survival 2

Chemotherapy → **Rucaparib maintenance treatment or placebo** → **First subsequent therapy** → **Second subsequent therapy**

PFS2, time from randomisation to disease progression on subsequent line of therapy or death.

BRCA1 mutant
- Median, mo: Rucaparib (n=80) 25.1, 95% CI 19.4–29.5; Placebo (n=37) 21.8, 95% CI 14.6–24.4
- HR, 0.84; 95% CI, 0.53–1.32

BRCA2 mutant
- Median, mo: Rucaparib (n=50) 34.1, 95% CI 22.9–NR; Placebo (n=29) 18.4, 95% CI 13.4–35.3
- HR, 0.51; 95% CI, 0.29–0.91

Visit cutoff 31 December 2019.

P value was nonsignificant for treatment by BRCA mutation (BRCA1 vs BRCA2) interaction test (P=0.1497).

HR, hazard ratio; **NR**, not reached; **PD**, progressive disease; **R**, randomisation.
Time to Second Subsequent Therapy

BRCA1 mutant
- Median, mo: Rucaparib (n=80) 25.9, Placebo (n=37) 18.5
- 95% CI: 18.9–31.8, 15.8–24.8
- HR: 0.65, 95% CI, 0.41–1.04

BRCA2 mutant
- Median, mo: Rucaparib (n=50) 34.2, Placebo (n=29) 19.4
- 95% CI: 24.4–54.3, 13.6–38.9
- HR: 0.55, 95% CI, 0.31–0.96

Visit cutoff 31 December 2019.

P value was nonsignificant for treatment by BRCA mutation (BRCA1 vs BRCA2) interaction test (*P*=0.4639).

HR, hazard ratio; PD, progressive disease; R, randomisation.
Updated Safety in ARIEL3: TEAEs Occurring in ≥25% of Patients with a BRCA mutation

Of the patients treated with rucaparib, MDS was reported by 1 patient in the BRCA1 subgroup and 2 patients in the BRCA2 subgroup; no patients in the placebo arm reported MDS or AML.

AML, acute myeloid leukaemia; ALT, alanine aminotransferase; AST, aspartate aminotransferase; MDS, myelodysplastic syndrome; TEAE, treatment-emergent adverse event.
Conclusions

• Rucaparib maintenance treatment led to a clinically meaningful delay in starting subsequent therapy and provided lasting clinical benefits versus placebo in patients with BRCA1- or BRCA2-mutant ovarian cancer
 o All postprogression efficacy endpoints were longer with rucaparib maintenance treatment than with placebo in both subgroups
 o While both subgroups benefited, results suggest greater efficacy in patients with a BRCA2 mutation versus those with a BRCA1 mutation

• Safety data for the two subgroups were similar and consistent with previous reports for the overall safety population¹

Acknowledgements

ARIEL3 co-coordinating investigators:
Robert L. Coleman, The University of Texas MD Anderson Cancer Center, Houston, TX, USA*
Jonathan A. Ledermann, UCL Cancer Institute, University College London and UCL Hospitals, London, UK

ARIEL3 principal investigators and sites:

AUSTRALIA
M. Buck (Sir Charles Gairdner Hospital)
A. Dean (Saint John of God Subiaco Hospital)
M. L. Friedlander (Prince of Wales Hospital)
J. Goh (Royal Brisbane and Women's Hospital)
P. Harnett (Westmead Hospital)
G. Kichenadasse (Flinders Medical Centre)
C. Scott (Peter MacCallum Cancer Centre – Melbourne)

BELGIUM
H. Denys (Universitair Ziekenhuis Gent)
L. Dirix (AZ Sint Augustinus)
I. Vergote (Universitair Ziekenhuis Leuven)

CANADA
L. Elit (Juravinski Cancer Centre)
P. Ghatage (Tom Baker Cancer Center)
A. Oza (Princess Margaret Hospital)
M. Plante (Centre Hospitalier Universitaire de Quebec)
D. Provencher (Centre Hospitalier de L’Université de Montréal)
J. Weberpals (Institut de Recherche de l'Hospital d'Ottawa)
S. Welch (London Regional Cancer Centre)

GERMANY
A. El-Balat (Universitätsklinikum Frankfurt)
C. Hänle (Klinikum Ludwigsburg-Bietigheim gGmbH)
P. Krabisch (Klinikum Chemnitz gGmbH)
T. Neunhöffer (HELIOS Dr. Horst Schmidt Kliniken Wiesbaden – Klinik für Gynäkologie und Gyn. Onkologie)
M. Pölcher (Rotkreuzklinikum München-Frauenklinik)
P. Wimberger (Technische Universität Dresden)

ISRAEL
A. Amit (Rambam Medical Center)
S. Kevel (Assaf Harofeh Medical Centre)
M. Leviy (The Lady Davis Carmel Medical Center)
T. Safra (Tel Aviv Sourasky Medical Center)
R. Shapira-Frommer (Chaim Sheba Medical Center)
S. Stemmer (Rabin Medical Center)

ITALY
A. Bologna (Arcispedale Santa Maria Nuova)
N. Colombo (Istituto Europeo di Oncologia)
D. Lorusso (Fondazione IRCCS Istituto Nazionale dei Tumori – Milano)
P. Pignata (Fondazione IRCCS Istituto Nazionale Tumori – Pascale)
R. Sabbatini (Polifarmacolo di Modena)
G. Scambia (Fondazione Policlinico Universitario Agostino Gemelli)
S. Tambari (Ospedale Civile degli Infermi)
C. Zamagni (Azienda Ospedaliero-Universitaria di Bologna – Policlinico S.Orsola-Malpighi)

NEW ZEALAND
P. Feng (Auckland City Hospital)
A. O'Donnell (Wellington Regional Hospital)

UNITED KINGDOM
S. N. Banerjee (Royal Marsden Hospital)
A. Clamp (Christie Hospital)
Y. Drew (Freeman Hospital – Northern Centre for Cancer Care)
H. G. Gabra (Imperial College Healthcare NHS Trust)
J. Jackson (Saint James's University Hospital)
J. A. Ledermann (University College London)
I. McNeish (Beatson Cancer Centre Glasgow)
C. Parkinson (Aldenbrooke's Hospital)
M. Powell (Barra and The London NHS Trust)

UNITED STATES
L. Ma (Rocky Mountain Cancer Centers)
M. A. Morgan (University of Pennsylvania)
R. T. Moist (Kamranos Cancer Institute)
D. G. Mitch (Washington University School of Medicine)
D. M. O'Malley (The Ohio State University, Arthur G. James Cancer Hospital)
B. M. Slomovitz (Sylvester Comprehensive Cancer Center)
E. M. Swisher (University of Washington)
T. Vanderkwaak (Hope Women's Cancer Centers)
M. Vullovich (Memorial Healthcare System)

FRANCE
A. Floquet (Institut Bergonié)
L. Gladieff (Institut Claudius Régaud)
F. Joly (Centre de Lutte contre le Cancer François Baclesse)
A. Leary (Institut de Cancérologie Gustave Roussy)
A. Lorho (Institut Cancer International de Dieppe)
J. Lotz (Hôpital Tenon)
J. Mediorni (Hôpital Émaillé Georges-Pompidou)
D. Tredan (Centre Léon Bérard)
B. You (Centre Hospitalier Lyon Sud)

*Currently affiliated with US Oncology Research, The Woodlands, USA.
This research was sponsored by Clovis Oncology, Inc. Medical writing and editorial support funded by Clovis Oncology were provided by Nathan Yardley, Shelly Lim, and Frederique H. Evans of Ashfield Healthcare Communications.

...and all ARIEL3 study patients and their families and caregivers