Comparative Biodistribution and Radiotherapeutic Efficacy of the Fibroblast Activation Protein (FAP)–Targeting Agents FAP-2286 and FAPI-46

Dirk Zboralski, Aileen Hoehne, Anne Bredenbeck, Matthias Paschke, Jan Lennart von Hacht, Jim Xiao, and Frank Osterkamp

3B Pharmaceuticals GmbH, Berlin, Germany; Clovis Oncology, Inc., Boulder, CO, USA

ABSTRACT

FAP-2286 Showed Durable Cellular Retention Compared to FAPI-46 in HEK-FAP cells

INTRODUCTION

• Fibroblast activation protein (FAP) is a membrane-bound protease under investigation as a pan-cancer imaging and therapeutic target given its limited expression in normal adult tissues but high expression on cancer-associated fibroblasts.

• FAP-targeting agents, FAP-2286 and FAPI-46, have shown great promise as positron emission tomography (PET) imaging agents when covalently linked to Gallium-68 (68Ga).

• FAP-2286 is a quinoline-based, FAP-targeting, small-molecule tetraazacyclododecanetetraacetic acid (DOTA) conjugate and has been shown to yield high tumor-to-background ratios in patients with various cancers.

• FAP-2286, a FAP-binding peptide monoclonal covalently linked to the radionuclide chelator DOTA, constitutes a new class of FAP-targeting modalities. PET scintigraphy of 68Ga-FAP-2286 demonstrated high uptake in neoplastic tissues and long retention in normal tissues of patients with solid cancers.

The goals of these studies were to evaluate the biodistribution of FAP-2286 and FAPI-46 when covalently linked to radionuclides and to correlate these results with the efficacy observed in the HEK293 FAP-overexpressing tumor model.

METHODS

• Biochemical and cellular assays: The binding kinetics \(K_a \) of the test compounds to amyloid-precursor-like-family protein was determined by surface plasmon resonance. Human recombinant FAP was incubated with test compounds. Median fluorescence intensity was measured by flow cytometry.

• In vivo biodistribution and efficacy studies: Female NMRI nude mice were subcutaneously implanted with 2×10^6 HEK-FAP cells (n=10 per group) and used to evaluate the biodistribution of 68Ga-FAP-2286 and 177Lu-FAP-2286. 68Ga-FAP-2286 and 177Lu-FAP-2286 single dose was administered. Studies were performed on an Excelsior PET/CT scanner (Kitronix, Chiswick, UK).

• Internalization assay: AlexaFluor488-labeled FAP-2286 and FAPI-46 were internalized into HEK-FAP cells and retained intracellular signal with minimal cell damage.

• PET/CT Imaging of both FAP-2286 and FAPI-46 was performed to assess tumor uptake and retention in vivo.

RESULTS

In Vivo Biodistribution of 68Ga-FAP-2286 and 177Lu-FAP-2286 in HEK-FAP Tumor-Bearing Mice by PET/CT Imaging

- In vivo with 68Ga-FAP-2286 and 177Lu-FAP-2286 showed similar tumor uptake with 9.8 ± 0.7 and 9.3 ± 1.8 %ID/g at 30 minutes post injection (p=0.945). FAP-2286 demonstrated high tumor uptake in neoplastic tissues and long retention in normal tissues of patients with solid cancers.

- The prolonged tumor retention of FAP-2286 correlated with a higher intracellular retention of the therapeutic (177Lu-FAP-2286) and imaging (68Ga-FAP-2286) agent in multiple tumor xenografts.

- FAP-2286 and FAPI-46 showed similar extracellular binding to HEK-FAP cells that was completely blocked by unlabeled competitor.

- FAP-2286 showed greater cell surface and intracellular fluorescence compared to FAPI-46 starting at 8 hours of incubation, and only 72 hours, FAP-2286 was not detected within FAP-2286-retained intracellular signal with minimal cell surface fluorescence.

- FAP-2286 showed durable cellular retention compared to FAPI-46 in HEK-FAP cells.

- This study was funded by Clovis Oncology, Inc. and 3B Pharmaceuticals GmbH. Editorial support was provided by Zephyr Biomedical Communications and Galileo Communications.

AUTHOR DISCLOSURES

This author has provided conflict of interest information. Detailed disclosure information is available upon request at www.acr.org/education/creditviewer. This work was supported by Clovis Oncology, Inc. and 3B Pharmaceuticals GmbH (Limited Support). The author disclosed that received support from Clovis Oncology, Inc., which is a commercial organization. This work was supported by Clovis Oncology, Inc.

REFERENCES

ACR Annual Meeting | April 8–13, 2022 | New Orleans, LA

ACKNOWLEDGMENTS

This author has provided conflict of interest information. Detailed disclosure information is available upon request at www.acr.org/education/creditviewer. This work was supported by Clovis Oncology, Inc. and 3B Pharmaceuticals GmbH (Limited Support). The author disclosed that received support from Clovis Oncology, Inc., which is a commercial organization. This work was supported by Clovis Oncology, Inc.