INTRODUCTION

- FAP is an emerging target in the field of peptide-targeted radionuclide therapy and imaging
- FAP is a membrane-tethered protein that is highly expressed on the surface of cancer-associated fibroblasts present in the tumor microenvironment of most epithelial cancers and on some tumor cells, but with limited expression in normal tissues
- FAP-targeted radiotracers have shown encouraging results as imaging agents, with high uptake observed across multiple tumor types
-

LuMIERE (NCT04939610) is a phase 1/2, multicenter, open-label study evaluating safety and tolerability, pharmacokinetics (PK), dosimetry, and preliminary activity of the therapeutic agent lutetium-

SUMMARY

- Peptide-targeted radionuclide therapy directed toward fibroblast activation protein (FAP) with the agent FAP-2286 has demonstrated antitumor activity in preclinical studies
- LuMIERE (NCT04939610) is a phase 1/2, multicenter, open-label study evaluating safety and tolerability, pharmacokinetics (PK), dosimetry, and preliminary activity of the therapeutic agent lutetium-177 (177Lu) FAP-2286 in patients with a FAP-expressing solid tumor
- Safety and tumor uptake of the imaging agent gallium-68 (68Ga) FAP-2286 will also be evaluated

REFERENCES

6. CHTX-2648-1402-32.

ACKNOWLEDGMENTS

Aerts et al.

PRESENTING AUTHOR DISCLOSURE

Jonathan McConathy, Malika Dhawan, Ajit H. Goenka, Emerson A. Lim, Yusuf Menda, Beth Chaser, Moh'd Khushman, Akiva Mintz, Youssef Zakharia, John J. Sunderland, Owen Bowles, Jim Xiao, Andrew D. Simmons, Kenton Wride, Aaron Eriko, Thomas A. Hope

AFFILIATIONS

1. University of Alabama School of Medicine, Birmingham, AL;
2. University of California, San Francisco, CA;
3. Mayo Clinic, Rochester, MN;
4. Columbia University Medical Center, New York, NY;
5. University of Iowa, Iowa City, IA;
6. The University of Texas MD Anderson Cancer Center, Houston, TX;
7. Clovis Oncology, Inc., Boulder, CO;
8. University of Southern California, Los Angeles, CA;